Posts tagged Big Data
Insights into door-to-door travel patterns of public transport passengers
Public transport enables fast and reliable station to station journeys. To assess passenger travel patterns and to infer actual quality of service, smartcard and AVL data offer great opportunities. There is, however, an increasing interest in insights into access and egress dynamics of public transport riders as well. What is the size of a stop’s catchment area, which modes are used, and how long and reliable are access and egress times? The answers to these and other questions enable optimization of the total mobility system, thereby also increasing public transport ridership and efficiency. Sufficient biking access of public transport stops (routes and parking), for instance, offer opportunities to increase public transport stopping distances, thereby increasing operational speed and reliability, without compromising accessibility of service areas. We developed a methodology to calculate and demonstrate these dynamics by using new and existing data technologies, namely AVL, survey and new promising app.
Find the Transit Data Conference abstract HERE and our presentation HERE
Optimization of a passenger railway transportation plan considering mobility flows and service quality
This research focuses on designing transportation plan for SNCF Transilien (French railway
operator for the Parisian suburban mass transit). The objective is to develop methods
and decision support tools to propose a timetable adapted to the passenger demand in the
Parisian mass transit system, including comfort and reliability criterias.
This paper aims to present the first step of this research. We propose a graph theoretic
ILP formulation for the Line Planning Problem, minimizing both travelers travel time and
operating cost. We furthermore develop a multi-objective method to solve this problem.
This method offers a pool of solutions in order to let the final designer choose the solution.
We report computational results on real world instances provided from SNCF Transilien.
Check the RAIL Lille paper of Lucile Brethome et al. HERE
Monitoren van kwaliteit en beleving van multimodale OV ketens voor betere prognoses
De bereikbaarheid van steden staat onder druk. Door de toename van bewoners, bedrijven en bezoekers is de verwachting dat de stedelijke bereikbaarheid verder onder druk komt te staan. Tot voorkort was het niet goed mogelijk om de kwaliteit (reistijd, betrouwbaarheid en beleving) van de gehele OV deur-tot-deur reis en de first en last mile te meten. Deze inzichten zijn essentieel om het effect van ontwikkelingen en maatregelen in te schatten.
Samen met het ministerie van I en M en de Metropoolregio Amsterdam hebben we een werkmethode ontwikkeld en toegepast om de kwaliteit van de gehele deur-tot-deur reis te beoordelen. In de eerste maanden van 2016 is een pilot voor de werkmethode uitgevoerd tussen Amsterdam en Haarlem. In deze pilot is de kwaliteit (reistijd, betrouwbaarheid en beleving) van de deur-tot-deur reis onderzocht met bestaande data (OV-chipkaart en NDOV) en direct vanuit de reiziger (enquêtes en apps). Met een nieuw ontwikkelde tool is met behulp van open data van zowel het stedelijke als landelijke OV (bijv. GVB en NS) inzicht gekregen in de geleverde kwaliteit. Met behulp van een nieuwe app zijn inzichten verkregen in ketenverplaatsingen, zoals fiets-OV.
De methodiek en nieuwe tooling heeft bewezen de benodigde inzichten op te leveren. Daarnaast blijkt uit de pilot onder meer dat:
– de combinatie van gegevens een goede werkmethode oplevert voor auto, OV, fiets en combinaties daartussen en voor de gehele deur-tot-deur reis (inclusief first en last mile).
– de objectieve en subjectieve waarde van reistijd, betrouwbaarheid en beleving per stukje van de reis regelmatig van elkaar verschillen. Zo wordt een betrouwbare en gemiddeld snelle OV-reis toch beleefd als lage kwaliteit.
De resultaten van de pilot zijn veelbelovend voor verdere ontwikkeling en toepassingen.
Bekijk de Platos presentatie HIER
Improving predictions of the impact of disturbances on public transport usage based on smart card data
The availability of smart card data from public transport travelling the last decades allows analyzing current and predicting future public transport usage. Public transport models are commonly applied to predict ridership due to structural network changes, using a calibrated parameter set. Predicting the impact of planned disturbances, like temporary track closures, on public transport ridership is however an unexplored area. In the Netherlands, this area becomes increasingly important, given the many track closures operators are confronted with the last and upcoming years. We investigated the passenger impact of four planned disturbances on the public transport network of Den Haag, the Netherlands, by comparing predicted and realized public transport ridership using smart card data. A two-step search procedure is applied to find a parameter set resulting in higher prediction accuracy. We found that in-vehicle time in rail-replacing bus services is perceived ≈1.1 times more negatively compared to in-vehicle time perception in the initial tram line. Besides, passengers do not seem to perceive the theoretical benefit of the usually higher frequency of rail-replacement bus services compared to the frequency of the replaced tram line. At last, no higher waiting time perception for temporary rail-replacement services could be found, compared to regular tram and bus services. The new parameter set leads to substantially higher prediction accuracy compared to the default parameter set. It supports public transport operators to better predict the required supply of rail-replacement services and to predict the impact on their revenues.
Read our TRB paper HERE
Find the poster HERE
Investigating potential transit ridership by fusing smartcard and GSM data
The public transport industry faces challenges to cater for the variety of mobility patterns and corresponding needs and preferences of passengers. Travel habit surveys provide information on the overall travel demand as well as its spatial variation. However, it often does not include information on temporal variations. By means of data fusion of smartcard and Global System for Mobile Communications (GSM) data, spatial and temporal patterns of public transport usage versus the overall travel demand are examined. The analysis is performed by contrasting different spatial and temporal levels of smartcard and GSM data. The methodology is applied to a case study in Rotterdam, the Netherlands, to analyze whether the current service span is adequate. The results suggest that there is potential demand for 10 extending public transport service span on both ends. In the early mornings, right before transit operations are resumed, an hour-on-hour increase in visitor occupancy of 33-88% is observed in several zones, thereby showing potential demand for additional public transport services. The proposed data fusion method showed to be valuable in supporting tactical transit planning and decision making and can easily be applied to other origin-destination transport data.
Read our TRB paper HERE
Find our presentation HERE
Waar liggen kansen voor OV: datafusie GSM en chipkaart
De grootste uitdaging van de openbaar vervoer sector is om tegemoet te komen aan de verscheidenheid aan reispatronen, en de bijbehorende behoeften en preferenties, van reizigers. Het beter matchen van vraag en aanbod levert zowel een kwaliteitssprong als kostenreductie op en heeft dus alle aandacht. Bestaande databronnen helpen, maar zijn nog niet afdoende. De combinatie van nieuwe bronnen biedt echter hoopgevende resultaten. Door een innovatieve methodiek kunnen GSM- en anonieme chipkaartdata gecombineerd worden om de OV potentie in kaart te brengen.
Bestaande onderzoeken (zoals OViN) geven informatie over de totale reisbehoefte en de ruimtelijke spreiding hiervan. Deze huishoudsurveys bieden veelal echter geen inzicht in de spreiding van deze reisbehoefte over de tijd. Een nieuwe methodiek om GSM- met anonieme OV chipkaartdata te koppelen, geeft die inzichten wel. Door middel van deze datafusie kunnen zowel de ruimtelijke als temporele patronen van OV gebruik vergeleken worden met de totale ruimtelijke en temporele reispatronen. Dit geeft inzicht in de (mis)match van vraag en aanbod in ruimte én tijd. Ideaal dus als eerste stap voor het verbeteren van deze match: OV potentie kan zo worden opgespoord.
Deze methode is toegepast in een case study in Rotterdam om te onderzoeken of het huidige OV bedieningsinterval voldoende aansluit bij de latente vraag. De resultaten demonstreren dat er potentie is om het OV bedieningsinterval zowel in de vroege ochtend als in de late avond uit te breiden. In de vroege ochtend, juist voordat het OV wordt opgestart, kan een uur-tot-uur toename in bezoekersaantallen van 33% tot zelfs 88% worden waargenomen in diverse delen van de Rotterdamse regio. Dit illustreert de potentiële vraag voor extra openbaar vervoer aanbod in de vroege ochtend. Op vergelijkbare wijze is deze analyse uitgevoerd voor het OV aanbod in de late avond.
Deze innovatieve methode van datafusie is van grote toegevoegde waarde te zijn gebleken ter ondersteuning van OV planning. Deze datafusie methode kan ook eenvoudig worden toegepast op andere herkomst-bestemmingsdata.
Lees het CVS paper HIER
Betrouwbare OV netwerken: Reizigersperspectief centraal dankzij anonieme chipkaartdata
Voor het openbaar vervoer is betrouwbaarheid een kwaliteitsfactor van belang.
Terwijl we een beetje vertraging met de auto wel oké vinden, is elk minuutje
dat een bus, trein of tram te laat arriveert, er echt één te veel. Vervoerders en
openbaarvervoerautoriteiten zijn dan ook continu op zoek naar mogelijkheden
om de betrouwbaarheid te verbeteren. Maar hoe bepaal je eigenlijk of
een maatregel werkt? Wat is een goede maat voor betrouwbaarheid? In
deze bijdrage maken we een boeiend uitstapje naar de wereld van haltes,
overstappen en OV-chipkaarten.
Lees het artikel uit NM magazine HIER
Lees het uitgebreide wetenschappelijke artikel HIER
Data driven enhancement of public transport planning and operations: service reliability improvements and ridership predictions
Automatic Vehicle Location (AVL) and smartcard data are of great value in planning, design and operations of public transport. We developed a transport demand model, which utilizes smartcard data for overall and what-if analyses, by converting these data into passengers per line and OD-matrixes and allowing network changes on top of a base scenario. This new generation model serves in addition to the existing range of transport demand models and approaches. It proved itself in practice during a case study in The Hague, where it helped the operator gain valuable insights into the effect of small network changes, such as a higher frequency.
Data also supports measures to improve service reliability. We introduced a new network design dilemma, namely the length of a transit line vs. its reliability. Long lines offer many direct connections, thereby saving transfers. However, the variability in operation is often negatively related to the length of a line, leading to poorer schedule adherence and additional waiting time for passengers. A data driven case study shows that in the case of long lines with large variability, enhanced reliability resulting from splitting the line could result in less additional travel time. This advantage compensates for the additional time of transferring if the transfer point is well chosen.
Read the full paper here: TRA Conference 2016 Van Oort Data driven enhancement of PT
or check the poster: TRA2016 Conference Poster
International rail summit 2016: Big Data and rail
Big Data also enter the railway industry. Board computers, passenger smart cards and cell phones provide valuable data to enhance design of networks and timetables. Big Data supports the improvement of transport models and cost benefit analyses (CBAs). An example of success was the approval of a new light rail in Utrecht, the Netherlands. It was not common use to consider reliability benefits explicitly, but in this case they were responsible for the positive cost benefit ratio.
Find my presentation at the Railsummit 2016 HERE
Rail summit website
Innovatieve toepassingen van OV chipkaartdata
Er wordt veel gesproken over nieuwe databronnen die helpen bij de uitdagingen in de OV wereld. De OV chipkaart is één van de bronnen, waarmee we het OV beter en efficiënter kunnen maken. Maar tot nog toe gebruikten we deze data vooral ter vervanging van eerdere handmatig verkregen data. In dit paper gaan we een stap verder. Aan de hand van drie innovatieve cases laten we zien dat er veel meer met deze data te doen is.
Met OV chipkaart data stelden wij een OV-model op voor Den Haag voor korte termijn prognoses. Dit is de basis geweest voor de drie cases:
De vraag voor eerste case was: zijn elasticiteits¬parameters af te leiden uit revealed preference data voor verschillende praktijksituaties? Wij merken dat dit goed mogelijk is. En dat het gedrag van reizigers verschilt per context: reizigers reageren heftiger op ‘tijdelijk ongemak’ dan in een vergelijkbare structurele situatie. De elasticiteitsparameter kan tot 25% hoger liggen.
Ook kijken wij naar een belangrijk, maar vaak in modellen genegeerd aspect van reisbeleving: comfort. Voor de regio Den Haag nemen wij expliciet comfort op in de (model) kostenfunctie door rekening te houden met de capaciteit van voertuigen. De bestaande vraag leiden wij direct af uit OV chipkaartgegevens. Onze studieresultaten tonen aan dat het niet beschouwen van capaciteit en comfort kan leiden tot een onderschatting van de vervoerwaarde-effecten tot 30%. We laten ook zien dat deze aanpak kan worden toegepast in de praktijk: de rekentijd is kort en het leidt tot een betere vraagraming van openbaar vervoer.
Tot slot kijken we naar de bruikbaarheid en inzet van andere databronnen. Als pilot hebben we een vergelijkende analyse tussen OV chipkaart- en GSM data uitgevoerd voor de regio Emmen. We tonen aan dat de GSM data aanvullend is: deze is namelijk ook bruikbaar voor analyse van de niet-ov-reizigers. Tot slot laten we zien dat het combineren van de twee databronnen inzicht verschaft in de potentie voor OV op specifieke HB relaties. Zo benoemen wij een aantal relaties in de regio Emmen waar op basis van de data het OV gebruik (vooralsnog) achter blijft en dus potentie heeft.
Alle drie de cases laten innovatie zien op onderzoek en toepassing van OV chipkaartdata. Wij gaan door met deze innovaties voor een beter en efficiënter OV!
Lees hier onze paper: CVS2015: Innovatie met chipkaartdata
De presentatie vind je HIER