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Abstract 

Automatic Vehicle Location (AVL) and smartcard data are of great value in planning, design and operations of public transport. 

We developed a transport demand model, which utilizes smartcard data for overall and what-if analyses, by converting these data 

into passengers per line and OD-matrixes and allowing network changes on top of a base scenario. This new generation model 

serves in addition to the existing range of transport demand models and approaches. It proved itself in practice during a case study 

in The Hague, where it helped the operator gain valuable insights into the effect of small network changes, such as a higher 

frequency. 

Data also supports measures to improve service reliability. We introduced a new network design dilemma, namely the length of a 

transit line vs. its reliability. Long lines offer many direct connections, thereby saving transfers. However, the variability in 

operation is often negatively related to the length of a line, leading to poorer schedule adherence and additional waiting time for 

passengers. A data driven case study shows that in the case of long lines with large variability, enhanced reliability resulting from 

splitting the line could result in less additional travel time. This advantage compensates for the additional time of transferring if the 

transfer point is well chosen. 
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1 Introduction 

Tighter public transport budgets in the Netherlands mean, similar to other countries, funding is being reduced, 

which makes it even more challenging to improve the quality and capacity, as required by the demanding (potential) 

customers. Simultaneously, maximizing efficiency is challenging, but not impossible though. With the right data and 

tools operators are able to address the key factors to enhanced and more cost efficient public transport, namely shorter 

travel times and enhanced service reliability (Lee et al. 2014, Van Oort et al. 2015a). More insights into the 

mechanisms of these aspects are becoming available by accessing several new data sources. Since the last decade, the 

public transport industry have started to consider how data retrieved from passenger smart cards (see e.g. Neema et 

al., 2015 and Pelletier et al., 2011), board computers (AVL (automatic vehicle location), see e.g. Furth et al., 2006 and 

Hickman, 2004) and mobile phones (see e.g. Calabrese 2011) could improve the design of public transport networks 
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and timetables to achieve efficient and high quality operations. In addition, social media data, such as user data of 

Facebook, Twitter and Flickr, may yield new knowledge on public transport usage (see e.g. Bregman, 2012). Video, 

Bluetooth and Wi-Fi-trackers may provide new insights into pedestrian flows in stations, at platforms and in vehicles 

(e.g. Van den Heuvel, 2015).  

The objective of this paper is to illustrate the potential benefits of using data, focusing on Dutch AVL and smartcard 

data. We illustrate this value by two example cases. 

The outline of this paper is as follows: First, a short description of Dutch AVL and smartcard data is given in 

Section 2. Section 3 presents our first case of applying data in real life: a prediction model supporting frequency 

impacts on passengers. The second case deals with service reliability. We demonstrate the impact of line length in 

Section 4. The paper ends with conclusions, acknowledgements and references. 

2 Dutch public transport data 

This paper presents two examples from the Netherlands, where new data sources became available recently. The 

challenge is to transform that data into information that can be used for service improvements and thus to make optimal 

use of the value it possesses.  

2.1 The Dutch Smart Card System: OV-Chipkaart 

In recent years The Dutch smartcard, the OV-Chipkaart, has been introduced (Cheung 2006). The Dutch smartcard 

uses nfc-chip technology and passengers have to check in and out on all public transport in the Netherlands (bus, tram, 

metro and train) to pay for their trips. Therefore, valuable information is obtained continually about both origins and 

destinations of all public transport users (on station/stop level). The check-in and check-out-devices are either located 

on the platform or station entrances (for trains and metros) or located inside the vehicle (for buses and trams). The 

most detailed information is available in the latter case, where each trip in a journey is tracked (a journey may consist 

of multiple trips, with a transfer in between). The route through the public transport network is therefore completely 

traceable. In case the smartcard devices are located on platforms or station entrances, an additional route search in the 

network is often necessary to match passengers to particular lines, as the only data available is from smartcards 

entering the system at point A and leaving the system at point B. More insight into the Dutch smartcard is provided 

by Van Oort et al. (2015c). 

2.2 The Dutch AVL System: GOVI 

In the Netherlands, all public transport operators cooperate with Borderless Public Transport Information 

(“Grenzeloze Openbaar Vervoer Informatie”), in short: GOVI. This initiative intends to make a wide range of public 

transport information, from timetables and routes to fares, vehicle location and punctuality, publicly available and 

processable. The data exchange interfaces are defined by a set of standards called BISON, in order to ensure the 

transferability of tools, apps and analyses. 

GOVI was designed to facilitate data communication between vehicles and the land side to enable dynamic 

passenger information on board and at stops. As an additional benefit, the actual and scheduled vehicle positions and 

times are logged in a database. Although this database was not the main objective of the GOVI system, it is extremely 

helpful to monitor and analyze public transport performance. In Van Oort et al. (2015b) more insights into the GOVI 

system and its data are provided. 

In the next sections we illustrate two applications of smartcard and GOVI data, showing the value of data in the 

planning process of public transport. 
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3 Case 1: Forecasting passenger numbers by smartcard data 

3.1 Ridership prediction model 

Several studies exist where origin destination information (OD-matrices) is derived from the smartcard data, either 

in aggregated form (e.g. Wang et al. 2011) or disaggregated form (e.g. Munizaga and Palma 2012 and Bouman et al. 

2013). Once a matrix is created that reproduces the passenger trips, it becomes possible to perform what-if analyses. 

In our approach we apply an elasticity approach in combination with the smartcard data. These kind of models are 

relatively simple to make (thus saving time and budget) and can make good use of the available data. The accuracy 

level is lower than multimodal models, but still enough for several research objectives. 

Equation 1 shows the calculation of generalized costs for OD pair i,j. Note that the coefficient of fare 𝛼4 is equal 

to 1, because costs are expressed in monetary values.  

 

  𝐶𝑖𝑗 = 𝛼1𝑇𝑖𝑗 + 𝛼2𝑊𝑇𝑖𝑗 + 𝛼3𝑁𝑇𝑖𝑗 + 𝛼4𝐹𝑖𝑗     (1) 

With: 

𝐶𝑖𝑗  Generalized costs on OD pair i,j 

𝛼1,𝛼2,𝛼3,𝛼4 Weight coefficients in generalized costs calculation 

𝑇𝑖𝑗   In-vehicle travel time on OD pair i,j 

𝑊𝑇𝑖𝑗  Waiting time on OD pair i,j 

𝑁𝑇𝑖𝑗   Number of transfers on OD pair i,j 

𝐹𝑖𝑗  Fare to be paid by the traveler on OD pair i,j 

 

Figure 2 shows the steps in our elastic demand calculation. First, using a public transport route choice algorithm 

(e.g. Brands et al. 2014), the generalized cost matrices are calculated for the base situation and the situation that 

includes a network scenario. Note that this requires successful calibration of the route choice parameters. Comparing 

the cost matrices results in relative cost changes per OD pair. Using the OD matrix for the base situation (from 

smartcard data) and an elasticity value (e.g. Wardman 2012, TRB 2004, Balcombe et al. 2004), the relative changes 

in OD flows are calculated, resulting in an OD matrix for the network scenario. The final step is to assign this OD 

demand to the public transport network, again using the public transport route choice algorithm. More details of our 
(deterministic) approach are provided in Van Oort et al. (2015c). 

 

Fig. 2:  Schematic representation of the demand prediction model. 

Comfort effects are incorporated in our model by making the in-vehicle travel time component of the generalized 

costs function dependent on the passenger load. For this, a crowding function is used. The perceived in-vehicle travel 

time is calculated as a multiplication factor over the real, objective travel time, which depends on the passenger load 

in relation to the number of seats and to the capacity for standing passengers. First, the transformed volume / capacity 
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(VC) ratio is determined using Equation 2. The result of this formula is that VC = 1 when the passenger load 𝐿 equals 

the seat capacity 𝐶𝑠𝑒𝑎𝑡𝑒𝑑 of a certain vehicle. VC = 2 when the load 𝐿 is equal to the crush capacity (seated plus 

standing passengers) 𝐶𝑐𝑟𝑢𝑠ℎ. The seat capacity and crush capacity can be specified for each public transport line and 

each modelling period (morning peak, evening peak, off-peak hours) separately, in order to distinguish between 

different vehicle types and lengths used on different lines during different times of the day. 

 

 

        (2) 

 

 

Based on the VC ratio, a piecewise linear function is used to determine the factor for perceived travel time F. 

Starting from 80% seat occupation the comfort level starts to decline (following Douglas Economics, 2006). 

According to Douglas Economics (2006), the multiplication factor equals 1.1 when a 100% seat occupation rate is 

reached. Revealed occupation rates using smartcard data are used to determine the crush capacity of different types of 

public transport vehicles. The crush capacity as specified by the manufacturer, assuming 4.5 persons/m2, appears not 

to be realized in practice in the Netherlands. Based on vehicle configuration and the maximum number of passengers 

per vehicle found in smartcard data, we determined that the crush capacity 𝐶𝑐𝑟𝑢𝑠ℎ in the vehicles in our study is reached 

with 3.5 persons/m2. Using the crowding multipliers from MVA Consultancy (2008) – where seated and standing 

multipliers are expressed as function of the number of standing passengers per m2 – we determined that the 

multiplication factor increases with 0.64 from 𝐶𝑠𝑒𝑎𝑡𝑒𝑑 to 𝐶𝑐𝑟𝑢𝑠ℎ. Wardman and Whelan (2011) conclude that the in-

vehicle time perception increases linear with increasing crowding levels. Non-linearity’s could not be justified 

empirically. This leads to a piecewise linear function with crowding multipliers as shown in Figure 2.  

Using Equation 3 this factor is applied over the real link travel times to calculate the perceived travel time, which 

replaces real travel time in the generalized costs function (Equation 1). 

 

𝑇𝑖𝑗
𝑝𝑒𝑟

= 𝑇𝑖𝑗 ∗ 𝐹          (3) 

 

To prevent the assignment of passengers to a vehicle where 𝐶𝑐𝑟𝑢𝑠ℎ has already been reached, the VC function 

increases steeply for VC values > 2.0. In this way, the attractiveness of a route with a completely crowded vehicle 

decreases in such way, that passengers will change their route or mode choice. This leads to the crowding function as 

visualized in Figure 2. 

Note that the load is needed for a 1 hour time period, because the capacity is also given per hour (resulting from 

the frequency and seat / crush capacity per vehicle). When the 

modelled time period is longer, a correction factor is included. 

Depending on the evenness of the load distribution over this 

time period, this factor is equal to the period length in hours 

(in case of a perfectly uniform distribution), or is smaller than 

the period length. If the distribution is uneven; the busiest hour 

is taken as representative for the entire time period, by 

dividing the real number of hours by the busiest hour factor. 

Since the costs of travelling now depend on the load, an 

iterative assignment is necessary. 

 

Fig. 2: Crowding function. 

This assignment procedure is comparable to a user equilibrium assignment, which is common in road network 

assignment when incorporating congestion effects. The iterative procedure is repeated until convergence is reached 

between iterations 𝑁 and 𝑁 + 1. We specified a convergence criterion of 5%.  
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3.2 Predicting impacts of frequency increase 

We applied our elasticity approach and performed predictions (with incorporation of comfort effects) in a case 

study. We connected smartcard data of HTM, the tram operator in The Hague (about 500,000 inhabitants, 3rd largest 

city of the Netherlands) to a transport model built in OmniTRANS. The city of The Hague has 12 tram/light rail lines 

with a total length of about 335 km, which transport about 70 million passengers per year.  

The case consists of increasing the frequency of tram line 15 (line length: 9.4 km) from 6 to 8 trams per hour during 

the morning and evening peak. As this line has a high peak demand, the effect of an increase in frequency on public 

transport demand is investigated for the situation with and without incorporating comfort effects of this measure. 

From this case we can conclude that 165 new passengers are expected in both the morning and evening peak, when 

only considering the benefits of the reduced average waiting time. When both the effects of reduced waiting time and 

improved comfort are incorporated, 240 and 200 new passengers are expected in the morning and evening peak 

respectively. The higher number in the morning results from public transport demand being more clustered within a 

small period, which achieves greater comfort benefits then in the evening, when demand is more uniformly distributed. 

We can conclude that the traditional approach, which does not consider comfort benefits, tends to underestimate the 

additional public transport demand of the aforementioned higher frequency with 30% in the morning peak, and 20% 

in the evening peak. This means that a substantial part of the benefits of this measure can be attributed just to improved 

comfort levels, which would not have been detected otherwise. Figure 3 visualizes the modelled relative effect of this 

measure with and without considering comfort effects. It shows that the higher frequency of line 15 attracts some 

passengers from the parallel tram line 1 (shown in red in Figure 3).  

 

  

Fig. 3: Relative network effects [% ridership change] of frequency increase on link loads a) without considering comfort 

(left) and b) considering comfort effects (right) during a morning peak. 

4. Case 2: enhanced service reliability by optimized line length 

While case 1 illustrated the value of smart card data, this section will demonstrate the potential value of AVL data. 

4.1 Service reliability 

Service reliability is a key quality indicator for public transport and has become increasingly important over the 

last years. It is defined as the certainty of service aspects compared to the schedule as perceived by the user and is one 

of the most important quality aspects of public transport (Lee et al. 2014). Actual vehicle trip time variability (i.e. 

service variability) affects service reliability and passenger travel time. The impacts of unreliable services on 

passengers are: 

- average travel time extension; 
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- increased travel time variability; 

- a lower probability of finding a seat in the vehicle.  

 

Several traditional quantifications of service reliability, such as punctuality and regularity, lack attention for the 

impact on passengers. Traditional indicators focus too much on the supply side of public transport, which does not 

allow for a proper analysis of passenger effects. To deal with the shortcomings of traditional indicators, Van Oort 

(2014) developed a new indicator, being the average additional travel time per passenger. This indicator translates the 

supply-side indicators, such as punctuality, into the average additional travel time that a passenger needs to travel 

from an origin to a destination due to service variability. The average additional travel time may be calculated per stop 

or per line and it enables explicit consideration of service reliability in cost-benefit calculations, since the level of 

service reliability may be translated into regular travel time.  

4.2 Instruments improving service reliability 

Literature shows that in urban public transport substantial attention is usually given to ways to improve service 

reliability on an operational level (Van Oort 2014). However, it is not clear how and to what extent strategic and 

tactical design decisions in public transport systems might affect service reliability.  

We developed several strategic and tactical measures that offer good possibilities to improve service reliability. 

The selected instruments adjust the process of public transport thereby being a regulator in the feedforward loop, as 

shown by Figure 4. More insights into these instruments are provided by Van Oort (2011). In the next section we 

continue by addressing the instrument of line length. 

 

 

Fig. 4: Feedforward loop in public transport planning, including our investigated instruments at strategic and tactical level. 

To apply the feedforward loop, shown in figure 4, it is of utter importance that the expected disturbances of 

decisions during the strategic and tactical design can be forecasted quickly and accurately. AVL data is a valuable 

source to support this. In addition, the impacts of the disturbances on passengers, the expected level of service 

reliability, should be predicted as well. In this way, an iterative improvement process of the regulator is possible, 

optimizing the impact of passengers. Van Oort (2014) elaborates on this in more detail.  
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4.3 The instrument of line length design  

In public transport, there has been a tendency to connect or extend lines. The added value of these new links is that 

they allow for more direct connections from origin to destination. When a particular line for instance is extended from 

a city center to a suburban area, passengers may skip a transfer, which saves them travel time. However, this time 

saving may be impeded completely by frequent delays resulting from the greater potential variability and thus 

unreliability of a longer service. Figure 5 illustrates the effects of decreasing line length. Line 1 operates from A to B. 

The variability of driving time increases along the line, of course depending on several aspects such as signal priority 

and exclusive lanes (Van Oort 2015b). Van Oort (2011) presents more details on the specific relationship of line length 

and service reliability. Line 2 follows the same route as line 1, but now it is divided into two parts: From A to C and 

from C to B. 

Two main differences exist between lines 1 and 2: 

- The variability of line 2 is smaller; 

- Introduction of a transfer at C for line 2. 
 

 

Fig. 5: The effects of splitting a line (at C) on vehicle trip time variability. 

The additional transfer will lead to additional travel time for passengers passing point C and the decrease in 

variability will lead to better schedule adherence and shorter additional waiting times for passenger travelling between 

C and B.  

During the design process, it is important to take both the potential time saving due to skipped transfers and the 

possible additional travel time due to unreliability into account while planning to extend or (dis)connect certain lines. 

We have analyzed this design dilemma in a quantitative way, using our framework calculating average additional 

travel time per passenger due to unreliability and transfers (Van Oort and Van Nes 2009). We investigated all long 

tram and bus lines in The Hague concerning the impacts of splitting them into two parts (at a logical stop in the city 

center/at railway stations). In this section, we present the general results and a cost benefit analysis. 

The results of the analysis are shown in Figure 6. Per line the average additional travel time per passenger is 

illustrated as a result of average additional waiting time and transfer time. Both the current (“long”) and the expected 

(“short”) additional travel time when the line is divided into two short lines are shown. The effect of splitting the lines 

differs per line due to differences in travel patterns and punctuality characteristics. The additional waiting time 

resulting from transferring on line 15/16 is very small, because this line actually consists of two lines, which are 

connected to each other only because of operational efficiency, not to offer more direct connections. It can be seen 

that this efficiency measure increases the additional travel time by 50%. This effect was probably not considered when 

the decision was made to integrate both lines. The effect of splitting is positive for line 1 and line 17 as well; the effect 
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is about 30% less additional waiting time. Although it was expected that splitting bus line 23 (by far the longest and 

least punctual in The Hague’s public transport network) would decrease the additional waiting time as well, the effect 

of splitting is actually negative. The main reason for this is that there is no ideal transfer point on this line: the number 

of through passengers on the main part of the line is never below 18%. 

 

Fig. 6: Effects of splitting lines on average additional waiting time per passenger. 

There are more elements than service reliability that influence the decision if a line should be cut. The (availability 

of) infrastructure is an important factor as well, since the introduction of shorter lines may require additional 

investment in for instance terminal facilities. This especially counts for rail bound public transport, as a turning loop 

(for one-directional-vehicles) or a cross over (for bi-directional vehicles) is required in order for trams and metros to 

be turned. In the latter case this could impose capacity constraints on the transport network. The turning facilities, if 

not already present, need to be constructed and maintained. The annual costs of this are estimated to be around   

€150,000. For buses the number is far less, as generally existing roads near the terminal can be used. However, these 

must be sufficiently equipped to be able to accommodate the vehicles. In addition to this all, the terminal could (by 

collective agreements) require the installation of crew facilities, such as waiting areas and toilets. 

Considering the operational costs, two short lines are typically more expensive than one long one, since the total 

amount of layover time will be longer. This additional time resulting from the operation of two shorter lines may also 

require the deployment of an additional vehicle. We estimated these costs to be € 500,000 (bus) to € 1 million (tram) 

per year, including both capacity and operating costs (i.e. longer layover times). On the other hand, costs may be 

reduced as frequencies on both shorter lines can be adjusted to the demand on both parts separately instead of equal 

frequencies on the entire longer line.  

Van Oort and Van Nes (2009) presented the trade-off between the positive and negative impacts for passengers of 

reducing line lengths. Shorter lines imply more reliable services and less passenger travel time on the one hand and 

additional transfers on the other hand. Depending on the passenger pattern and the departure punctuality 

characteristics, shorter lines may result in overall shorter passenger travel times and less unreliability. Above, we 

demonstrated cases in The Hague where shorter lines lead to overall shorter passenger travel times. The welfare gains 

for existing and new passengers are roughly estimated to be € 2.5 million per year. Considering the general 

characteristics of a passenger journey and the associated demand elasticity the decrease of total travel time of about 

10% may result in about 5% more passengers and revenues per line.  

5. Conclusions 

Public transport operators are exposed to massive data collection from their smartcard and AVL systems. In this paper 

we illustrated the potential value of these data by two cases. 
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We developed an approach in which the smartcard matrix is assigned to the network to reproduce the measured 

passenger flows. Once the assignment can reproduce the passenger flows simple what-if analysis becomes possible. 

With the introduction of an elasticity method on the demand matrix, simple modal-split calculations are possible. This 

method was applied in a case study, being the tram network in The Hague. The tool turned out to be very valuable for 

the operator to gain insights into small changes, such as a frequency increase. 

We also introduced an additional design dilemma, namely the length of line vs. reliability. Long lines offer many 

direct connections, thereby saving transfers. However, the variability is often negatively related to the length of a line, 

leading to poorer schedule adherence and additional waiting time for passengers. In this section we suggest taking 

into account both the positive and negative effects of extending or connecting lines. We calculated the average 

additional travel time per passenger due to variability and transfers based on actual trip and passenger data. A case 

study conducted in The Hague shows that in the case of long lines with large variability, splitting the line may result 

in less additional travel time due to improved service reliability. This advantage compensates for the additional time 

of transferring if the transfer point is well chosen. Splitting a long line into two lines with an overlap in the central 

part may even result in more time saving. In that case, fewer passengers will need to transfer.  
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