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Abstract
This research focuses on designing transportation plan for SNCF Transilien (French rail-
way operator for the Parisian suburban mass transit). The objective is to develop methods
and decision support tools to propose a timetable adapted to the passenger demand in the
Parisian mass transit system, including comfort and reliability criterias.
This paper aims to present the first step of this research. We propose a graph theoretic
ILP formulation for the Line Planning Problem, minimizing both travelers travel time and
operating cost. We furthermore develop a multi-objective method to solve this problem.
This method offers a pool of solutions in order to let the final designer choose the solution.
We report computational results on real world instances provided from SNCF Transilien.
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1 Introduction

For historical reasons, the design of the SNCF railway services is, as elsewhere, mainly
driven by incremental optimization of production resources (and primarily the available
train-paths, human and material resources): timetable, infrastructure maintenance, rolling
stock and crew. Moreover, each year, marginal modifications are executed on the previous
timetable, but a totally new timetable is rarely designed.

To answer the need for mobility, it becomes important to have decision support tools on
the design of an optimized transportation plan with regard to passenger flows and service
quality. This design breaks up with the historical paradigm of optimization of the production
resources. Proposing an offer consistent with real needs is crucial for SNCF. The traffic
increased by 30% over the last decade, reaching 3 million passengers a day on the Parisian
suburban area network. An offer more adapted to passenger demand will give improvements
concerning average travel time, service reliability, connections and comfort.

Line planning is studied at the second stage of the transportation plan conception, which
is composed of five consecutive steps: analysis of demand, line planning, timetabling,



rolling stock and crew management. We define a train by an origin, a destination, a route,
timings and planned days. A line is a set of trains which differ only by their departure and
arrival times. The Line Planning Problem (LPP) consists of defining for each line the origin,
the destination, the route and the frequency in order to satisfy the estimated demand, namely
to enable the transport of all the planned passengers from their origin to their destination.
There are two competing objectives: on the one hand, to minimize the operating costs of
lines, and, on the other hand, to minimize user discomfort. User discomfort is usually mea-
sured by the total passenger travel time or the number of transfers during the ride, or both.
The planner has to balance these two objectives. Indeed, if we only minimize user discom-
fort, we would install a line for every passenger, which would be exceedingly expensive,
but if we only minimize the operating costs of lines, it would inflict extremely long travel
times for the passengers. One of the first model in literature can be found in Bussieck et
al. (1996). The model maximizes the direct travelers with a MILP formulation. Barber et
al. (2008) present a model which maximizes passenger coverage. In their paper, lines are
constructed from scratch, instead of using a set of preprocessed lines. Schöbel and Scholl
(2006) present a model which integrates line planning with minimal travel time and traffic
assignment. The mathematical model is based on the change & go graph. Bussieck (1998)
developed two different linearizations for cost-oriented model and a Branch&Cut algorithm
for its solution. Goossens et al. (2006) investigates the multi-line planning problem in
which not all trains need to stop at all stations. This model is cost-oriented. Borndörfer et
al. (2008) present two multi-commodity path formulations where the passenger paths can
be freely routed and the lines are generated dynamically. Their objective is to minimize the
travel time, to which they add fixed and variable costs for the line system. The first formula-
tion concerns the case in which all paths are allowed as lines. Distinct flow variables for the
passengers and for the lines ensure that lines are constructed from scratch and the passen-
gers are routed freely through the network. The second formulation uses a variable for each
potential line and each potential passenger path. The models are solved by heuristics and
compared theoretically. Schöbel (2012) proposes a paper surveying the literature published
on the line planning problem. The Transit Route Network Design Problem (TRNDP) is a
related area of research defined as a “process which implies clear and consistent techniques
for designing a public transportation network”: the focus is on defining an approach rather
than a model. The TRNDP deals also with the LPP problematics, but may comprise other
planning stages like timetabling or rolling stock scheduling. Kepaptsoglou and Karlaftis
(2009) propose a paper surveying this topic.

In the literature, the conception or adaptation only takes travel time into account, whereas
passenger comfort and service reliability are neglected. Some papers introduce indicators to
characterize the performance of railway services, focusing on the passengers’ point of view.
As such we want to emphasize the way the travel is perceived by the user through indicators
of travel time, comfort and reliability. Reliability is of great importance since studies (Bates
et al. (1971)) have proven passengers tend to prefer having a slightly longer trip if it is more
reliable. It can be measured through the adherence to schedule – or punctuality –, day-to-
day variability, the latter corresponding to the time one would budget on its travel time to
be late at most once a month. Van Oort et al. introduce a design approach taking service
reliability (van Oort et al. (2015)) and crowding (van Oort et al. (2016)) into account, but
do not facilitate optimization. Indeed, they propose a modelling framework to measure the
quality of the transport offer, but its objective is not to optimize it.

The main goal of this paper is to offer a multiobjective approach for Line Planning,



where both operating costs and passenger comfort are taken into account. To this aim, we
present an algorithm based on the ε-constraint method.

The paper is organized as follows. We formally state the problem in Sect. 2. We present
the adopted multiobjective approach in Sect. 3, based on a Integer Linear Program (ILP)
which minimizes both the the cost and the passenger’s comfort. Experimental results are
presented and analyzed in Sect. 4. Finally, some conclusions and perspectives are given in
Sect. 5.

2 Problem description

We aim at developing a decision support tool that proposes passenger-oriented lines. This
section describes the Transilien characteristics and some assumptions considered in our
problem formulation.

Our goal is to define a set of lines, and their frequencies. As several types of rolling
stock are used on the same train line in Transilien, we want to define which one is used for
each line, depending on its cost and its capacity. We assume that the travel time is the same
for all rolling stock.

The aim of this decision support tool is to quickly propose a panorama of different line
concepts, depending on the cost. That is why we introduce a multi-objective method in
our work. The two objectives will be on the one hand the cost, defined by the number of
commercial kilometers, weighted by the cost of the rolling stock per kilometer, and on the
other hand, the passenger’s comfort, measured by the generalized travel time (travel time
and transfer time).

This model has to cover current use of the network, namely the number of passengers
who use the network today.

3 A multiobjective approach for Line Planning

3.1 A graph theory model

Let G = (V, E) be a directed graph, based on the Change & Go network (Schöbel and
Scholl (2006)), defined as follows.

The set V of nodes represents either station-line-pairs or the origins and destinations of
the passengers. The set E of edges represents:

• Directed edges between nodes of the same stations (representing transfers, boarding
or alighting);

• Edges between nodes of the same lines (Representing the train paths).

We define weights on all edges e ∈ E representing the real travel time for passengers
using this edge e:

• For an edge e between a node representing an origin or a destination and a station-
line-pair, we have the weight ce = 0;

• For an edge e between nodes of the same line, the weight is equal to the travel time
required between the two stations;
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Figure 1: Change & Go Network: representation of 3 lines and 4 stations

• For an edge e between station-line-pairs of the same station, the weight is: ce = tfe
where tfe is the required time to do the transfer between the two lines.

An example is illustrated in Figure 1. Three lines l1, l2 and l3 are running from station A
to station D. Line l1 is stopping at stations B and C, whereas line l2 is stopping at station
B and passing through station C, and line l3 is passing through station B and stopping
at station C. Black plain edges correspond to running pattern and run time between two
consecutive stops of a train, e.g. tv1v2 is the running time between the stop v1 and the
stop v2. Blue plain edges represents transfer time between two train stops of the same
station, i.e. tfv1v5 is the minimal transfer time between v1 and v5. Red dashed edges
represent passengers boarding and alighting the train. Orig1 and Dest1 vertex correspond
to the origin and the destination of the first group of passengers. Orig2 and Dest2 vertex
correspond to the origin and the destination of the second group of passengers.

Given a set of lines L, determining the best lines for passengers amounts to calculate a
minimum-cost multi-commodity flow where the capacity of edges are given by the maxi-
mum frequency of the line and the capacity of the rolling stock, and where the commodities
are the origin-destinations of the passengers.

Notations
Let us consider the following sets:

• G = (V, E): the Change & Go network,



• S: the set of stations of the network,

• L: the set of considered lines,

• Li: the set of lines stopping at station i ∈ S,

• Le: the set of lines crossing edge e ∈ E ,

• M: the set of types of rolling stocks available,

• OD: the set of Origin-Destination pairs covered by the demand.

The following parameters are defined:

• ce: the cost of an edge e ∈ E ,

• nm: the number of rolling stock units available for each type m ∈M,

• capm: the capacity of rolling stocks of each type m ∈M,

• kml : the cost of a rolling stock unit m ∈M used in line l ∈ L,

• dvi : the demand for each Origin-Destination i ∈ OD at each vertex v ∈ V ,

• freqsmin: the minimal frequency at a station s ∈ S,

• freqsmax: the maximal frequency at a station s ∈ S.

The following integer decision variables are considered:

• Tml : the number of rolling stock units of type m ∈ M used during the planning
horizon on line l ∈ L,

• F ie : the number of passengers of the Origin-Destination i ∈ OD assigned to edge
e ∈ E .

Demand satisfaction and flow conservation constraints
F ie is the flow of passengers of the Origin-Destination i ∈ OD assigned to edge e ∈ E .
The number of passengers who want to ride this Origin-Destination is δi. The demand
satisfaction constraints for this Origin-Destination are:

• for the Origin node v ∈ V: ∑
e=(v,s)∈E

F ie = δi (1)

• for the Destination node v ∈ V: ∑
e=(s,v)∈E

F ie = δi (2)



The flow conservation constraints for station-line-pairs nodes v ∈ V are:∑
e=(v,s)∈E

F ie −
∑

e=(s,v)∈E

F ie = 0 (3)

We set the value of the demand for each Origin-Destination i ∈ OD at each vertex v ∈ V
to:

dvi =

 δi if v is the origin node
−δi if v is the destination node,

0 if v is a station-line-pair node.
(4)

The demand satisfaction and flow conservation constraints can now be written as:∑
e=(v,s)∈E

F ie −
∑

e=(s,v)∈E

F ie = dvi ,∀i ∈ OD,∀v ∈ V (5)

An Integer Linear Programming Model
The mathematical model to solve the Multiobjective Line Planning Problem (MLPP) where
both operating costs and user discomfort are taken into account is given below:

MLPP = (f1, f2) (6)

f1 = min
∑
i∈OD

∑
e∈E

ceF
i
e (7)

f2 = min
∑
l∈L

∑
m∈M

kml T
m
l (8)

s.t. ∑
e=(v,s)∈E

F ie −
∑

e=(s,v)∈E

F ie = dvi ,∀i ∈ OD,∀v ∈ V (9)

freqsmin ≤
∑
m∈M

∑
l∈Ls

Tml ≤ freqsmax,∀s ∈ S (10)

∑
i∈OD

F ie ≤
∑
m∈M

∑
l∈Le

capmT
m
l ,∀e ∈ E (11)

∑
l∈L

Tml ≤ nm,∀m ∈M (12)

Tml ∈ IN,∀l ∈ L,∀m ∈M (13)

F ie ∈ IN,∀e ∈ E ,∀i ∈ OD (14)

The first objective function (7) minimizes the generalized travel time of Line Planning. The
second objective function (8) aims to minimize the operating costs of the Line Planning.

Constraints (9) ensure that the demand is respected and that there is a flow conservation
on each node of the network. Constraints (10) say that the number of rolling stock units
which are crossing the station i have to respect the minimal and maximal frequencies of i.
Constraints (11) ensure that the number of passengers on a line l cannot exceed the capacity
of l. Constraints (12) limits the number of available trains for each type of rolling stock.



3.2 Methodology based on the ε-constraint method

As the two objective functions are two competing objectives, we choose to apply a multi-
objective method to our model. There are three different types of multi-objective methods
(Collette and Siarry (2003)):

• A priori methods, where preference information is first asked to the decision maker,
and then a solution satisfying at best these preferences is found;

• A posteriori methods, where a set of Pareto optimal solutions is found, and then the
decision maker chooses one of them;

• Interactive methods, where the decision maker can iteratively search for the solution
satisfying at best his preferences.

As we want to provide a decision support tool where the decision maker does not know
exactly his preferences, we choose to use an a posteriori method - the ε-constraint method-
to solve our problem.

The ε-constraint method, introduced by Haimes et al. (1971), changes a multi-objective
problem into a mono-objective problem. A single objective is chosen to be optimized and
the others are transformed into constraints. The ε-constraint optimization problem is defined
by

min f1 (15)

s.t.fi ≤ εi∀i = 2, ..., n. (16)

where f1, ..., fn are the n objective functions of the problem and εi is an upper bound
for the objective i.

The Pareto Front is obtained by varying the value of εi for each optimization. This
method is easy to use. It allows to find solutions on the Pareto Front, even in case of non-
convex Front.

In our case, we choose to set the minimization of the generalized travel time as the
objective to be optimized. The minimization of the operating costs is thus set as a constraint.
We set the values of ε in the range between the optimal value of cost obtained by resolving
the model only with the cost objective, and the value of cost obtained by only minimizing
the travel time objective. Objective functions (7) and (8) become then:

min
∑
i∈OD

∑
e∈E

ceF
i
e (17)

s.t. ∑
l∈L

∑
m∈M

kml T
m
l ≤ ε (18)

Where (17) is the objective function of the problem, and constraint (18) ensures that the
solution does not exceed the allocated budget.



4 Experimental results

4.1 Passenger traffic flows data

For this study, we need to predict – or estimate – Origin-Destination time-dependent pas-
senger travel matrices. To this aim, we have data obtained by manual countings of travellers
boarding and alighting at each train station, and Origin-Destination surveys. These data
give us the number of passengers per Origin-Destination per hour (source Transilien). We
assume that our data are reliable in order to focus on the modeling step.

4.2 Test instances

Several tests were performed on SNCF Transilien real instances. The chosen perimeter is
composed of 60 stations, and there are 570, 000 passengers a day. The instances concern 2
hours of the morning or evening peak hours, from the south to the north of the line. There
are three types of rolling stock units, which can be used with one or two train-sets, and that
have different passenger capacities. We created different pools of omnibus and semi-direct
lines. Table 1 gives the characteristics of each instance.

Table 1: Instances description
Instance |L| |OD|

(number of lines) (number of Origin-Destination pairs)
A 5 441
B 5 399
C 9 441
D 7 399

4.3 Computational results

All computations were carried out on an Intel Core i7 processor running at 3.40 GHz, with
a Windows 7 64 bits operating system. The algorithms were coded in Java and we use IBM
ILOG CPLEX 12.4 as the MIP solver.

In this set of experiments, we decide that the minimum for ε is the solution of MLPP
where we only consider f2, and the maximum for ε is set by the operating costs of the
solution of MLPP where we only consider f1. So, we first solve the two MILP, one for each
objective function. Let δε be the minimal cost of a line. The parameter ε varies as follows:
εi+1 = εi + δε.

Figure 2 shows the approximation of the Pareto front obtained by MLPP for the instance
A. We can observe an inflection point, surrounded on the Figure 2, on the front. This
observation is important because it shows that from a certain cost, the improvement of the
offer in terms of travel time is not significant.

Table 2 summarizes the numerical results. For each instance, we provide, for each ob-
jective function, the value of the minimum obtained and the value of the maximum obtained.

We also provide the number of solutions obtained by our resolution.
Table 2 shows that we can provide a large set of solutions on the Pareto front in a single

run.
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Figure 2: Approximation of the Pareto front

Table 2: Results of MLPP
Inst. Operator costs (km) User total travel time (min) Nb sol.

min max min max
A 1347 2211 1358238 1651227 32
B 1095 1265 1032845 1034258 7
C 1333 2179 1357398 1680282 25
D 980 1676 1032845 1064967 29

Then, we define the max-dominance point as the solution which dominates the greatest
part of the objective space. Let maxp (resp. minp) be the maximum (resp. minimum) ob-
tained for the objective function f1 minimizing the generalized travel time. Letmaxc (resp.
minc) be the maximum (resp. minimum) obtained for the objective function f2 minimizing
the cost. Let Sol be the set of solutions of MLPP. Calculating the max-dominance point
MDP means identifying:

MDP = max
x∈Sol

{A = (maxp − f1(x))(maxc − f2(x))} (19)

The max-dominance point characterizes the best compromise between the objectives for
the decision-maker.

We introduce two indicators to qualify this point:

• The Normalized Cost Rate (NCR): let x be the value of the cost for the max-dominance
point. The Normalized Cost Rate is defined as:



NCR =
x−minc

maxc −minc
(20)

• The Normalized Profit Rate (NPR): let y be the value of the profit for the max-
dominance point. The Normalized Profit Rate is defined as:

NPR =
maxp − y

maxp −minp
(21)

The calculated rates for all instances are reported in table 3. The main conclusion from
these results is that at this max-dominance point, the minimum value of the generalized
travel time is almost reached (NPR > 95%), while the value of cost is quite far from the
maximum (NCR < 65%). These solutions are the most relevant for the decision-maker,
because between the max-dominance point and the maximum obtained for the objective
function f2 minimizing the cost, a reduction in term of costs does not degrade the solution
for travelers.

Table 3: Analysis of the max-dominance point
Inst. Operator costs (km) User total travel time (min)

max-dom. point NCR max-dom. point NPR
A 1883 0.62 1364141 0.98
B 1121 0.15 1034270 0.99
C 1843 0.6 1358320 0.99
D 1059 0.11 1032850 0.99

5 Conclusion and Perspectives

In this paper, we have developed a multiobjective model for the LPP based on a graph.
This model takes into account both operating costs and user discomfort, by minimizing
the number of kilometers and the generalized travel time. Numerical experiments on test
instances with real data show that the proposed multiobjective model for Line Planning
Problem is capable of proposing a large set of non-dominated solutions in a single run. This
model can be useful for the decision maker to assess the value of a solution, considering
both user profit and operating costs.

We are currently working on a model to solve the Timetabling Problem. Moreover, as
the Timetabling Problem and the Line Planning Problem are always tackled separately in
the literature as distinct problems, our goal is to deal with both problems simultaneously in
order to improve the quality of the solution of our transportation plan design. To this aim, we
will give a particular attention to the connections between the Line Planning Phase and the
Timetabling phase. For that, we can imagine an iterative loop which creates new constraints
for the Line Planning phase by analyzing the results of the Timetabling Phase. Experimental
results on realistic use-cases will be carried out and analyzed. We will compare the results
obtained by our tool combining line planning and timetabling with existing timetables, in
terms of quality of service (generalized travel time, congestion. . . ). Another point of our
research will be the improvement of the objective functions. Indeed, we want to include



the crowdedness of the trains, the number of seats or the number of different lines in our
criteria, in order to improve the level of service of our offer.

Then, a careful attention will be given to the robustness of the timetable: the Paris area
is a very dense network, so if the timetable is not robust, a minor incident can affect a lot
of trains, in particular in peak hour. So, we will have to evaluate it, and to find a way to
improve it. To this aim, some indicators will allow the calculation of the reliability of the
timetables, in term of quality of service. We think that we could include the calculation of
these indicators in our design process, in order to improve passengers’experience. To this
end, we think of using a simulating tool, to change our model into an iterative simulation-
optimization loop.
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