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 1 

ABSTRACT 2 
The availability of smart card data from public transport travelling the last decades allows analyzing current 3 

and predicting future public transport usage. Public transport models are commonly applied to predict 4 

ridership due to structural network changes, using a calibrated parameter set. Predicting the impact of 5 

planned disturbances, like temporary track closures, on public transport ridership is however an unexplored 6 

area. In the Netherlands, this area becomes increasingly important, given the many track closures operators 7 

are confronted with the last and upcoming years. We investigated the passenger impact of four planned 8 

disturbances on the public transport network of Den Haag, the Netherlands, by comparing predicted and 9 

realized public transport ridership using smart card data. A two-step search procedure is applied to find a 10 

parameter set resulting in higher prediction accuracy. We found that in-vehicle time in rail-replacing bus 11 

services is perceived ≈1.1 times more negatively compared to in-vehicle time perception in the initial tram 12 

line. Besides, passengers do not seem to perceive the theoretical benefit of the usually higher frequency of 13 

rail-replacement bus services compared to the frequency of the replaced tram line. At last, no higher waiting 14 

time perception for temporary rail-replacement services could be found, compared to regular tram and bus 15 

services. The new parameter set leads to substantially higher prediction accuracy compared to the default 16 

parameter set. It supports public transport operators to better predict the required supply of rail-replacement 17 

services and to predict the impact on their revenues.  18 

 19 

Keywords: disturbance, passenger, prediction, public transport, smart card  20 
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1. INTRODUCTION 1 
The last decade, in several cities worldwide automated fare collection (AFC) systems are introduced for the 2 

public transport system by public transport operators and authorities. For these AFC systems, passengers 3 

need to use a smart card for public transport travelling. Open systems in which passengers only need to 4 

tap-in, as well as closed systems in which both a tap-in and tap-out are required, are applied in practice. 5 

Although the main purpose of the introduction of AFC systems was to enable an easier way of revenue 6 

collection, additionally large amounts of data are generated which can be used to get more insight in 7 

passengers’ travel behavior. Over the last years, data from AFC systems is used for many purposes by 8 

scientists and practitioners on a strategic, tactical and operational level (1). Data from AFC systems is for 9 

example used for destination inference in case of open systems with tap-in only (e.g. 2, 3), transfer 10 

inference (e.g. 4, 5) and journey inference to estimate origin-destination (OD) matrices (e.g. 6, 7, 8, 9, 10). 11 

Other studies focus on fusion of smart card data of different operators (e.g. 11) or clustering public transport 12 

stops in order to identify and classify public transport activity centers based on smart card data (12).  13 

Next to the aforementioned studies which use smart card data to describe, analyze, cluster and 14 

visualize current travel patterns, there are also studies focusing on public transport ridership prediction 15 

based on smart card inferred travel patterns. In (13) a smart card based prediction model is developed which 16 

allows the prediction of effects of changes in public transport supply, like increasing the frequency or 17 

rerouting public transport services. Also effects of crowding can be incorporated in these short-term 18 

ridership prediction models (e.g. 14). This type of prediction model is of added value to improve prediction 19 

accuracy of the impact of structural network changes, which are usually implemented by operators on one 20 

or on a few fixed dates in the year. However, in practice many public transport operators are confronted 21 

with temporary closures of infrastructure many more times per year. These temporary infrastructure 22 

closures are for example caused by maintenance work, track renewal or redesign of public space. These 23 

closures usually result in longer travel time, more transfers, lower rider ship, lower passenger satisfaction, 24 

and less revenues. In the Netherlands, a tendency can be observed of more, larger and more long-lasting rail 25 

infrastructure closures. For example, HTM, the urban public transport operator in Den Haag, the 26 

Netherlands, was confronted with more than 20 temporary track closures in 2015. It therefore becomes 27 

more urgent for operators to predict the impact of these (planned) disturbances on their passengers, 28 

ridership and revenues. This impact of temporary track closures on demand and supply is different 29 

compared to the impact of structural network changes. Passengers might be willing to postpone a single 30 

trip, change their mode choice or route choice, or accept the use of rail-replacement bus services for 31 

temporary situations. Operators on the other hand have to accept the temporary reduction in level of service 32 

– because of rail-replacement bus services, additional travel time and transfers – and might accept the 33 

temporary additional operational costs for these bus services and communication. It can be concluded that 34 

the responses of passengers and operators differ in case of temporary network changes, compared to 35 

structural network changes. In order to predict passenger impacts of temporary network changes with 36 

sufficient accuracy, other/additional parameters and/or different parameter values in the public transport 37 

ridership prediction models are therefore required.  38 

This study aims to improve the prediction accuracy of the impact of planned, temporary 39 

disturbances on public transport usage. To this end, in this study a new parameter set is calibrated and 40 

validated to predict public transport ridership in case of planned disturbances. This parameter set is based 41 

on smart card data derived from AFC systems during several planned disturbances which occurred in Den 42 

Haag in 2015. The study results in a new set of parameter values allowing to better predict passenger 43 

impacts of planned disturbances in urban public transportation. With this result, more insight is gained in 44 

passenger behavior during disturbances. It also supports operators to predict the impact on their revenues, 45 

and to better align supply of rail-replacement services on alternative routes to the remaining demand, in 46 

order to efficiently use their scarce resources. This paper is structured as follows. Chapter 2 describes the 47 

methodology to calibrate and validate the parameter set of the ridership prediction model. Chapter 3 48 

describes the case study network to which the methodology is applied. Chapter 4 discusses the results of 49 

this study. At last, in chapter 5 conclusions and recommendations for further research are formulated. 50 

 51 

 52 
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2. METHODOLOGY 1 
 2 

2.1 Origin-destination matrix estimation  3 
When travelling in trams or busses in the Netherlands by smart card, passengers are required to tap-in and 4 

tap-out at devices which are located within the vehicle. This means that in the Netherlands the passenger 5 

fare is based on the exact distance travelled in a specific public transport vehicle. Especially for busses, this 6 

is different from many other cities in the world where often an open, entry-only system with flat fare 7 

structure is applied, for example in London (6) and Santiago, Chile (7). This means that for each individual 8 

transaction the boarding time and location, and the alighting time and location of each trip leg are known. 9 

Also, it is known in which public transport line and vehicle each passenger boarded and alighted with their 10 

unique smart card number. This closed within-vehicle system therefore eases the destination and journey 11 

inference, compared to open entry-only systems. Also vehicle occupancies can be inferred directly from the 12 

transaction data.  13 

For an urban public transportation network with tram and bus lines, journeys can be inferred by 14 

combining registered trip legs made with the same smart card ID, when the boarding time to a vehicle 15 

follows within a certain time window after the alighting time of the previous trip leg made with that same 16 

card. In the Netherlands, a maximum threshold transfer time of 35 minutes is applied to classify trip legs 17 

made by the same smart card ID as one journey. By aggregating all journeys, a smart card based OD matrix 18 

can be inferred. Under assumption that the distribution of destinations 𝑗 from each origin 𝑖 for non-card 19 

users is similar to the distribution of smart card users, the OD matrix can be scaled based on the small 20 

percentage of non-card users in the Netherlands. Determination of the share of non-card users is based on 21 

passenger counts. 22 

When travelling by train or metro in the Netherlands, there is also a closed system where 23 

transactions are required during boarding and alighting. For train and metro, devices are however located at 24 

the station gates. This means that train-train or metro-metro transfers, as well as exact chosen routes cannot 25 

be determined directly from the data, and that inference algorithms are necessary to obtain these insights.  26 

 27 

2.2 Public transport ridership prediction model 28 
For the prediction of public transport usage in case of planned disturbances, in this study the public 29 

transport ridership prediction model as described in (13) is used as basis. For an urban public transportation 30 

network, let the set of public transport stops and lines be denoted by 𝑆 and 𝐿 respectively. Each line 𝑙 ∈ 𝐿 is 31 

defined by an ordered sequence of stops 𝑙 = (𝑠𝑙,1, 𝑠𝑙,2…, 𝑠𝑙,|𝑙|). 𝐿𝑡 ∈ 𝐿 and 𝐿𝑏 ∈ 𝐿 represent the subset of 32 

tram lines and bus lines of the considered network, respectively. Trip schedules are imported in the model, 33 

based on which the frequency and stop-to-stop travel times are inferred for each line 𝑙 ∈ 𝐿 in time period 𝑡. 34 

Public transport demand is connected to this network by an OD matrix between all stops 𝑠 ∈ 𝑆 for each 35 

distinguished time period 𝑡. The OD matrix of the undisturbed base scenario 𝛿0 is based on smart card data 36 

and estimated as explained in chapter 2.1, using a conversion table between the stop ID of the boarding and 37 

alighting location in the smart card transaction data and the modelled stops in the prediction model, in order 38 

to connect travel demand to the modelled urban public transportation network.  39 

 For public transport ridership predictions, this model is based on a demand elasticity. For each OD 40 

pair 𝑖, 𝑗 the generalized travel costs – being the sum of costs for in-vehicle time, transfer walking time, 41 

waiting time, transfers and travel fares with their corresponding weights – are calculated for the base 42 

scenario 𝛿0 and for each scenario 𝛿. Equation 1 shows the calculation of the generalized costs, expressed in 43 

monetary terms. Applying a demand elasticity parameter to the relative change in generalized travel costs 44 

between 𝛿0 and 𝛿 for each OD pair allows the calculation and assignment of a new public transport OD 45 

matrix for each scenario 𝛿. Equation 2 shows the calculation of new public transport demand.  46 

The default parameter values for 𝑎1, 𝑎2, 𝑎3, 𝑎4 , 𝑎5 used in this prediction model for structural 47 

network changes are obtained based on a combination of model calibration and literature review (16). In 48 

this calibration process, model assignment results (number of passengers and passenger-distance on the 49 

network, per line 𝑙 ∈ 𝐿 and per link) for the undisturbed base scenario 𝛿0  were compared with the raw 50 

smart card transaction data. The parameter set resulting in the highest fit between assignment results and 51 
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raw smart card data, with parameter values within bounds found in literature, is applied in this model. The 1 

weight of in-vehicle time 𝑎1 equals 1.0, whereas one minute walking time 𝑎2 or waiting time 𝑎3 are valued 2 

1.5 times more negatively compared to one minute in-vehicle time. This is also in line with values found in 3 

literature (e.g. 16, 17). Given the focus on an urban public transport network with usually relatively short 4 

trips, a relatively small transfer penalty of 3 minutes is applied for 𝑎4. In this prediction model we only 5 

consider the marginal travel costs per travelled kilometer, without incorporating the base fare of €0.88 6 

which applies for all passengers and all trips in urban public transport in the Netherlands. This is justified 7 

since this fixed cost component, which is the same for each public transport route, does not add explanatory 8 

power to passenger route choice in the model. The marginal travel costs per travelled kilometer in the model 9 

are reflected by 𝑎5 and equal €0.05/km. Compared to the marginal travel costs of €0.15/km currently in the 10 

Netherlands (18), this value shows a limited price sensitivity. This can be explained due to the fact that also 11 

passengers which are price-inelastic are incorporated in the data. These passengers do not have to pay for 12 

their tickets themselves (e.g. business trips paid by the company, or student trips paid by the Dutch 13 

government), have monthly or yearly travel passes (where the marginal travel costs are usually lower), or 14 

travel with discount (e.g. elderly, children). The Value-of-Time for the Dutch situation is determined based 15 

on (19).  16 

We can conclude that there is already a calibrated parameter set which is used to predict public 17 

transport ridership for undisturbed situations. In this study, we specifically investigate to what extent this 18 

parameter set needs to be adjusted to perform accurate passenger predictions in case of planned 19 

disturbances. 20 

 21 

𝐶𝑖𝑗 = (𝛼1𝐼𝑉𝑇𝑖𝑗 + 𝛼2𝑊𝐾𝑇𝑖𝑗 + 𝛼3𝑊𝑇𝑇𝑖𝑗 + 𝛼4𝑁𝑇𝑖𝑗) ∗ 𝑉𝑜𝑇 + 𝛼5𝑑𝑖𝑗   (1) 22 

 23 

With: 24 

𝐶𝑖𝑗  Generalized costs on OD pair i,j 25 

𝛼1,𝛼2,𝛼3,𝛼4, 𝑎5 Weight coefficients in generalized costs calculation 26 

𝐼𝑉𝑇𝑖𝑗  In-vehicle travel time on OD pair i,j 27 

𝑊𝐾𝑇𝑖𝑗  Walking time on OD pair i,j 28 

𝑊𝑇𝑇𝑖𝑗  Waiting time on OD pair i,j 29 

𝑁𝑇𝑖𝑗  Number of transfers on OD pair i,j 30 

VoT  Value-of-Time (€/hour) 31 

𝑑𝑖𝑗  Distance travelled in public transport on OD pair i,j 32 

 33 

𝐷𝑖𝑗
𝛿 = (𝐸 (

𝐶𝑖𝑗
𝛿

𝐶
𝑖𝑗
𝛿0

− 1) + 1) ∗ 𝐷𝑖𝑗
𝛿0       (2) 34 

 35 

With: 36 

𝐷𝑖𝑗
𝛿  Demand on OD pair 𝑖, 𝑗 in scenario 𝛿 37 

E Elasticity 38 

𝐶𝑖𝑗
𝛿  Generalized costs in scenario 𝛿 39 

𝐶𝑖𝑗
𝛿0 Generalized costs in base scenario 𝛿0 40 

𝐷𝑖𝑗
𝛿0 Demand on OD pair 𝑖, 𝑗 in base scenario 𝛿0 41 

 42 

2.3 Evaluation framework 43 
An evaluation framework is developed to evaluate the accuracy of different parameter sets for ridership 44 

predictions in case of (planned) disturbances. In this evaluation framework, the difference between the 45 

predicted and realized effect on public transport usage is determined for all public transport lines of the 46 

considered network 𝑙 ∈ 𝐿 in each distinguished time period 𝑡. Hereby, special attention is paid to lines 47 
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which are affected by a certain disturbance and to rail-replacement bus lines. In this study, public transport 1 

usage is measured by the number of passengers 𝑃 and passenger-kilometers 𝑃𝐾.  2 

The used prediction model consists of a base scenario 𝛿0, of which the number of passengers and 3 

passenger-kilometers are calibrated based on imported smart card data from 20 working days in March 4 

2015 corresponding to this undisturbed base network (chapter 2.2). The passenger impact of disturbed 5 

scenarios 𝛿 ∈ ∆  are predicted using the described elasticity approach after modelling the network 6 

corresponding to each scenario 𝛿. Besides, for base scenario 𝛿0 and each disturbed scenario 𝛿 the number 7 

of passengers and passenger-kilometers per line per time period are inferred directly from the raw smart 8 

card data. The raw smart card data are scaled for non-card users, thereby applying the same scaling factor as 9 

applied in the prediction model. Also, a seasonal correction is applied between the time of the year in which 10 

disturbance 𝛿 occurred and the time of the year from which the smart card data of the base scenario is 11 

inferred. This correction is based on smart card inferred seasonal differences found on other public 12 

transport lines which are not affected by a certain disturbance 𝛿 at all (not directly, nor indirectly as 13 

alternative route). Based on smart card realization data, it is then possible to calculate the effect on public 14 

transport ridership during a certain disturbance compared to the undisturbed base scenario.   15 

The predicted and realized impact of a certain disturbance on the number of passengers and 16 

passenger-distance can then be compared, using Equation 3 and Equation 4. These equations express the 17 

difference between the predicted and realized relative difference in passengers and passenger-distance 18 

between 𝛿 and 𝛿0 for each public transport line 𝑙 ∈ 𝐿  in each time period 𝑡. Applying these two equations 19 

leads in total to 𝐿 ∗ 𝑡 cases for both 𝑃 and 𝑃𝐾, based on which the prediction accuracy of each parameter 20 

set can be determined. A value of ∆𝑃  or ∆𝑃𝐾  larger than 0 indicates that the prediction model 21 

underestimates the loss of passengers due to a disturbance: there is less public transport usage realized than 22 

predicted. A value of ∆𝑃 or ∆𝑃𝐾 smaller than 0 indicates the opposite: the prediction model overestimates 23 

the loss of passengers due to a disturbance: there is more public transport usage than predicted. 24 

 25 

∆𝑃 = ((
𝑃𝛿,𝑟−𝑃𝛿0,𝑟)

𝑃𝛿0,𝑟
) − (

𝑃𝛿,𝑝−𝑃𝛿0,𝑝)

𝑃𝛿0,𝑝
)) ∗ 100   ∀ 𝑙 ∈ 𝐿  ∀ 𝑡     (3) 26 

 27 

∆𝑃𝐾 = ((
𝑃𝐾𝛿,𝑟−𝑃𝐾𝛿0,𝑟)

𝑃𝐾𝛿0,𝑟
) − (

𝑃𝐾𝛿,𝑝−𝑃𝐾𝛿0,𝑝)

𝑃𝐾𝛿0,𝑝
)) ∗ 100   ∀ 𝑙 ∈ 𝐿  ∀ 𝑡    (4) 28 

 29 

With: 30 

𝑃(𝐾)𝛿,𝑟  Realized number of passenger(-kilometer)s in disturbed scenario 𝛿  31 

𝑃(𝐾)𝛿0,𝑟  Realized number of passenger(-kilometer)s in undisturbed base scenario 𝛿0 32 

𝑃(𝐾)𝛿,𝑝  Predicted number of passenger(-kilometer)s in disturbed scenario 𝛿 33 

𝑃(𝐾)𝛿0,𝑝  Predicted number of passenger(-kilometer)s in undisturbed base scenario 𝛿0 34 

 35 

2.4 Experimental design 36 
In order to predict public transport usage in case of planned disturbances, it is important to determine which 37 

parameters values could be different, compared to the values used to predict regular passenger route choice 38 

and ridership as described in chapter 2.2. First, the value of the elasticity parameter 𝐸𝛿  in case of 39 

disturbances is of relevance. As mentioned in chapter 1, passengers react differently to temporary network 40 

changes compared to structural network changes. On the one hand, passengers might accept a longer travel 41 

time for a certain amount of time (indicating a less negative value of 𝐸𝛿). On the other hand, passengers 42 

might decide to change their mode choice or destination choice, or to postpone their trip in case of 43 

temporary track closures, until regular operations are restored (indicating a more negative value of 𝐸𝛿). 44 

Second, the modelling of rail-replacement services is of relevance. Let 𝐿𝑅 ∈ 𝐿  be the subset of 45 

rail-replacing bus services. In many cases, operators will supply rail-replacing bus services in case of track 46 

closures. These rail-replacing services differ from regular bus lines in several ways. For example, the 47 

existence, route and stop locations of such services are often less well known by passengers. Given the 48 
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temporary existence of these lines, passengers are less familiar with aspects as departure time, travel time 1 

and reliability. When these busses replace rail services, these services have to use temporary stop locations 2 

nearby the closed rail stop, which often have less visibility and equipment like dynamic arrival information 3 

or shelters. It is therefore possible that passengers experience waiting time for a rail-replacement services 4 

more negatively compared to waiting time for regular tram or bus services (indicating a higher value of 5 

parameter 𝑎3, related to waiting time 𝑊𝑇𝑇𝑅 specific for rail-replacement services). Besides, these services 6 

transport passengers who are familiar with rail-bound services. From literature it is known that when a bus 7 

service is transformed to a tram line, travel time is perceived less negatively compared to bus travelling 8 

(20). Therefore, it can be hypothesized that the replacement of a tram line by busses will be perceived more 9 

negatively by passengers familiar with rail-bound travelling. Therefore, the value of parameter 𝑎1 related to 10 

in-vehicle time perception in rail-replacement busses 𝐼𝑉𝑇𝑅 might be more negative compared to regular 11 

trams or busses. Rail-replacement busses usually operate with higher frequencies than the original tram 12 

line, to compensate for the lower capacity of a bus compared to a tram. However, it is unclear to what extent 13 

passengers really perceive and incorporate this theoretical benefit in their route and mode choice. It is 14 

therefore questionable whether modelling the realized frequencies of the rail-replacement services 𝑓𝑅, or 15 

the original frequencies of the tram line which is being replaced 𝑓𝑇, leads to more accurate predictions.  16 

  17 

TABLE 1 Experimental Design  18 
 19 

Parameters Elasticity 𝑬𝜹 Waiting time 𝑾𝑻𝑻𝑹 In-vehicle time 𝑰𝑽𝑻𝑹 Frequency 

Parameter values {-0.7, -1.1, -1.5} {1.5, 2.0} {1.0, 1.25} {𝒇𝑹, 𝒇𝑻) 
Scenario 1 (default) -1.1 1.5 1.0 f R 

Scenario 2 -1.1 1.5 1.0 MIN(f R; f T) 

Scenario 3 -1.1 1.5 1.25 f R 

Scenario 4 -1.1 1.5 1.25 MIN(f R; f T) 

Scenario 5 -1.1 2.0 1.0 f R 

Scenario 6 -1.1 2.0 1.0 MIN(f R; f T) 

Scenario 7 -1.1 2.0 1.25 f R 

Scenario 8 -1.1 2.0 1.25 MIN(f R; f T) 

Scenario 9 -0.7 1.5 1.0 f R 

Scenario 10 -0.7 1.5 1.0 MIN(f R; f T) 

Scenario 11 -0.7 1.5 1.25 f R 

Scenario 12 -0.7 1.5 1.25 MIN(f R; f T) 

Scenario 13 -0.7 2.0 1.0 f R 

Scenario 14 -0.7 2.0 1.0 MIN(f R; f T) 

Scenario 15 -0.7 2.0 1.25 f R 

Scenario 16 -0.7 2.0 1.25 MIN(f R; f T) 

Scenario 17 -1.5 1.5 1.0 f R 

Scenario 18 -1.5 1.5 1.0 MIN(f R; f T) 

Scenario 19 -1.5 1.5 1.25 f R 

Scenario 20 -1.5 1.5 1.25 MIN(f R; f T) 

Scenario 21 -1.5 2.0 1.0 f R 

Scenario 22 -1.5 2.0 1.0 MIN(f R; f T) 

Scenario 23 -1.5 2.0 1.25 f R 

Scenario 24 -1.5 2.0 1.25 MIN(f R; f T) 

 20 

The first row of Table 1 summarizes the four parameters which are hypothesized to have different 21 

values when modelling passenger behavior during disturbances specifically. The remaining parameters 22 

from Equation (1) - 𝑎2 (multiplier for walking time perception), 𝑎4 (fixed transfer penalty), 𝑎5 (marginal 23 

travel costs) and 𝑉𝑜𝑇 (value of time) - were expected to have no or a limited effect on the prediction 24 

accuracy, which was confirmed in a first sensitivity analysis to these parameters. In this study four planned 25 

disturbances which occurred on the HTM network in 2015 are considered, denoted by the total set ∆. 26 

Subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2}  and  ∆𝐵∈ ∆ {𝛿3, 𝛿4}  are defined, which both contain 50% of the investigated 27 

disturbances for calibration and validation purposes, respectively. This calibration phase consists of two 28 
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steps. In the first step, a systematic scan is performed to search for the best fitting parameter set(s) from 1 

predefined scenarios, using the four model parameters of Table 1. For all four parameters, plausible values 2 

are a priori determined. The calibrated parameter values used for passenger assignment for the undisturbed 3 

base scenario 𝛿0 are used as starting point (𝑊𝑇𝑇𝑅=1.5, 𝐼𝑉𝑇𝑅=1.0, 𝑓𝑅=𝑓𝑅). These values are considered as 4 

reasonable starting point, since these values are calibrated and within bounds found in literature. An 5 

elasticity value 𝐸𝛿  of -1.1 is used as starting point based on literature (e.g. 16). The direction in which each 6 

parameter value can change when predicting ridership during disturbances, compared to regular ridership 7 

predictions, is explained in the first part of this chapter 2.4. The upper and lower bound values for 𝐸𝛿 , 8 

𝑊𝑇𝑇𝑅 and 𝐼𝑉𝑇𝑅 are selected in such way, that they remain within literature bounds on one hand, but show 9 

sufficient variation to explore the solution space on the other hand. The modelling of the frequency of 10 

rail-replacement bus services is a binary variable, which can be equal to 𝑓𝑅 or 𝑓𝑇. The second row of Table 11 

1 shows the resulting parameter values. All combinations between these predefined parameter values are 12 

systematically explored using the evaluation framework as explained in chapter 2.3. The remaining rows of 13 

Table 1 show all 24 scenario combinations of parameter values which are explored. In the second step of the 14 

calibration, the parameter values are further optimized based on the promising parameter sets identified in 15 

step 1. After the generic, systematic search in step 1 using predefined parameter values and scenarios, step 2 16 

performs an in-depth search to find the best fitting parameter set. In step 2, parameter values are not bound 17 

to the predefined values and scenarios any more. Once the best fitting parameter set is determined, this set is 18 

validated by applying it to the investigated disturbances 𝛿 ∈ ∆𝐵. For this subset ∆𝐵 it is tested whether the 19 

prediction accuracy using the optimized parameter set is similar to the accuracy obtained for the 20 

disturbances 𝛿 ∈ ∆𝐴, and whether the prediction accuracy improved compared to the default parameter set.  21 

 22 

3. CASE STUDY 23 
The methodology as described in chapter 2 is applied in a case study. The urban public transport network of 24 

Den Haag, the Netherlands, is used in this study. Public transport services on this network are operated by 25 

HTM. The network consists of 12 tram lines and 8 bus lines. No metro services are operated in the city of 26 

Den Haag. Two of the tram lines function as light rail connection between Den Haag and the nearby suburb 27 

of Zoetermeer. On an average working day, more than 250,000 trips are made on the HTM network (14). 28 

93% of the passengers use a smart card for travelling (14). The remaining 7% buys a ticket from the driver 29 

or at the vending machine, or uses a special ticket. When modelling the HTM network, 4 different time 30 

periods are distinguished in the frequency-based assignment and prediction model: morning peak 31 

(7am-9am), evening peak (4pm-6pm), off-peak (9am-4pm) and the evening and early morning (6pm-7am).  32 

 In 2015 there were several track closures on the public transport network operated by HTM. 33 

Given the closed AFC system, in combination with relatively many case studies available, the HTM 34 

network is an interesting case study area to investigate the impact of planned disturbances on public 35 

transport usage. As explained, in total 4 different disturbances 𝛿 which occurred in 2015 on the HTM 36 

network are investigated, which are divided into two subsets ∆𝐴∈ ∆ {𝛿1, 𝛿2} and ∆𝐵∈ ∆ {𝛿3, 𝛿4} used for 37 

calibration and validation purposes, respectively. Table 2 describes the impact of each disturbance on the 38 

public transport network. Figure 1 shows the adjusted public transport network for all four disturbances. 39 

Closure 𝛿1 ‘Koninginnegracht’ resulted in detours for several tram lines in the city center. Besides, one of 40 

the two important connections between Central Station and Scheveningen of tram line 9 was replaced by 41 

bus services of line 69 (whole day) and 79 (only peak hours). Closure 𝛿2 ‘Loosduinseweg’ resulted in the 42 

shortening of two busy tram lines 2 and 4. The shortened part of the route of tram line 2 was replaced by 43 

busses. Most stops of the shortened tram line 4 were covered by tram line 6, which follows a route partly 44 

parallel to the shortened part of tram line 4. During closure 𝛿3 ‘Westvest’, the route of tram line 1 – 45 

connecting the city of Den Haag with the city of Delft – was shortened. A rail-replacement bus line 71 was 46 

provided, although it could not stop near all original tram stops due to infrastructure constraints. Closure 𝛿4 47 

‘Zieken’ within the city center resulted in detours for several lines. Given the relatively dense public 48 

transport network in the city center, several alternative lines were available. Furthermore, rail-replacement 49 

busses were no option because of the limited accessibility for motorized vehicles in the city center. The set 50 

of disturbances ∆ can roughly be divided in closures in which tram lines are detoured (𝛿4, 𝛿1 partly), and 51 



Yap, Nijënstein and Van Oort  9 

 

closures in which tram lines are shortened and replaced by bus services (𝛿2, 𝛿3, 𝛿1 partly). To investigate 1 

and test that the selected parameter set is robust to perform accurate predictions for both type of closures, 2 

both closure types are incorporated in the subset used for calibration ∆𝐴∈ ∆ {𝛿1, 𝛿2}, as well as in the subset 3 

used for validation ∆𝐵∈ ∆ {𝛿3, 𝛿4}.  4 

 For the reference network 𝛿0, as well as disturbed networks 𝛿1 and 𝛿4, 20 working days of smart 5 

card data are used in this study. Given the ≈250.000 trips at the HTM network per average working day, this 6 

roughly means that about 5 million smart card transactions are used as basis for the calibration and 7 

validation. For the shorter lasting disturbances 𝛿2 and 𝛿3, about 1.25 million smart card transactions (5 8 

working days) are used. All raw transactions are anonymized by removing personal information and by 9 

aggregating the data, to guarantee confidentiality and to obey Dutch privacy regulations.  10 

 11 

 12 

 13 
 14 

FIGURE 1 Public transport network during planned disturbances 𝜹𝟏 ‘Koninginnegracht’ (upper 15 

left), 𝜹𝟐 ‘Loosduinseweg’ (upper right), 𝜹𝟑 ‘Westvest’ (lower left) and 𝜹𝟒 ‘Zieken’ (lower right) 16 

(star: work location / green: line unaffected / orange: line rerouted / red: line shortened / blue: 17 

rail-replacement bus line) 18 

 19 
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TABLE 2 Overview Of Network Changes During Planned Disturbances In 2015 1 
 2 

Disturbance 𝜹 Period Affected lines 𝒍 ∈ 𝑳 Rail-replacement line 𝒍 ∈ 𝑳𝑹 

𝛿1 Closure 

‘Koninginnegracht’ 

November Tram 1/15/16/17: rerouted 

Tram 9: shortened + bus-replacement 

Bus lines 69+79 

(instead of tram 9) 

𝛿2 Closure 

‘Loosduinseweg’ 

August Tram 2: shortened + bus-replacement 

Tram 4: shortened 

Tram 6: extended (to replace tram 4) 

Bus line 52 

(instead of tram 2) 

𝛿3 Closure 

‘Westvest’ 

October Tram 1: shortened + bus-replacement Bus line 71 

(instead of tram 1) 

𝛿4 Closure ‘Zieken’ June Tram 1/9/15/16: rerouted - 

 3 

4. RESULTS 4 
 5 

4.1 Resulting parameter set 6 
Applying the methodology described in chapter 2 to the HTM case study network, results in a new 7 

parameter set to predict public transport usage in case of planned disturbances. Table 3 shows the values for 8 

the proposed new parameter set. In case of planned disturbances, an elasticity parameter value 𝐸𝛿  of -0.7 9 

resulted in the best fit with the raw smart card data. Despite the hypothesis that passengers might perceive 10 

waiting time for a rail-replacement service more negatively compared to waiting time for regular tram and 11 

bus services, applying a higher waiting time coefficient did not improve the prediction accuracy. Therefore, 12 

the use of a generic waiting time coefficient of 1.5 for all modes (tram, bus and rail-replacement services) is 13 

proposed. However, applying a more negative in-vehicle time perception in bus services replacing an 14 

existing tram line did improve the prediction accuracy. In the used prediction model in this study, this is 15 

reflected by applying a certain multiplication factor for the operational speed of a rail-replacement service. 16 

Using a speed factor of 0.9 – which equals the inverse in-vehicle time coefficient of 1.11 – resulted in the 17 

best fit with the raw smart card data. The value for the in-vehicle time coefficient derived from realization 18 

data is somewhat lower than the speed factor found in (20) using a stated preference experiment, but points 19 

towards the same direction. Regarding the frequency of rail-replacement services, study results indicate that 20 

modelling the frequency of the original tram line f T leads to a better fit than using f R, if f R > f T. This 21 

indicates that passengers do not incorporate the benefit of the higher frequency of the rail-replacement 22 

services compared to the original tram line in their route and mode choice. From a theoretical perspective, 23 

this can be explained because vehicle capacity is not incorporated in the prediction model used in this study. 24 

The higher frequency f R compared to f T is often due to the lower capacity of a bus compared to a tram 25 

vehicle. Since the negative effect of a lower bus capacity is not incorporated in the model, only 26 

incorporating the positive effect of a higher bus frequency aimed to compensate for this non-incorporated 27 

capacity effect would overestimate the level of service of the rail-replacement bus service. In case f R < f T , 28 

one could apply f R in the prediction model. In this case it would even underestimate the negative effect of 29 

the bus replacement service, since only the additional waiting time (and not the lower vehicle capacity) is 30 

incorporated in the ridership prediction. Therefore it is proposed to use the minimum of f R and f T as 31 

frequency of rail-replacement bus services in ridership predictions, when vehicle capacity is not 32 

incorporated in the used model. 33 

 34 

TABLE 3 Comparison Between Default And New Proposed Parameter Set  35 
 36 

Parameter Default parameter values New parameter values 

Elasticity 𝐸𝛿  -1.1 -0.7 

Waiting time coefficient 𝑎3 for 𝑊𝑇𝑇𝑅 1.5 1.5 

In-vehicle time coefficient 𝑎1 for 𝐼𝑉𝑇𝑅 1.0 1.11 

Frequency f R f R MIN(f R; f T) 

 37 
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Figure 2 shows the obtained prediction accuracy results for {𝛿1, 𝛿2} ∈ ∆𝐴 used in the calibration phase and 1 

for {𝛿3, 𝛿4} ∈ ∆𝐵  used in the validation phase. As explained in chapter 2.3, for each disturbance the 2 

prediction accuracy is quantified for in total 𝐿 ∗ 𝑡 cases in terms of deviation in relative impact on the 3 

number of passengers ∆𝑃 and number of passenger-kilometers ∆𝑃𝐾 between prediction and realization, for 4 

each line within each time period. In Figure 2, the distribution of the prediction accuracy of all 𝐿 ∗ 𝑡 cases is 5 

shown per scenario 𝛿 using the default and new parameter set. For 𝛿1 (closure ‘Koninginnegracht’) it can 6 

be seen that the new parameter sets especially improves the prediction accuracy regarding the travelled 7 

passenger-distance over different lines in different time periods, whereas the prediction accuracy in terms 8 

of number of passengers slightly decreases. Because the fare is directly based on the travelled distance, it 9 

can be justified to prioritize accurate predictions of passenger-kilometers from the operator perspective of 10 

revenue management. For 𝛿2  (closure ‘Loosduinseweg’) especially the number of cases of which the 11 

prediction inaccuracy of 𝑃 and 𝑃𝐾 was larger than |10%| initially was reduced. Applying the proposed 12 

parameter set to {𝛿3, 𝛿4} ∈ ∆𝐵 in the validation phase shows that the prediction accuracy substantially 13 

improves for both 𝛿3 and 𝛿4. For 𝛿3 (closure ‘Westvest’) the prediction of both 𝑃 and 𝑃𝐾 clearly improves 14 

compared to the default parameter set. The prediction accuracy obtained by the new parameter set in 𝛿3 is 15 

even higher than obtained for 𝛿1 and 𝛿2 based on which the set was calibrated, for both the predicted 16 

number of passengers and passenger-distance. An explanation might be that 𝛿3  is a relatively simple 17 

network adjustment. While the network adjustments required in {𝛿1, 𝛿2, 𝛿4} are rather complex, influencing 18 

multiple lines, 𝛿3 has only impact on one tram line. For 𝛿4 (closure ‘Zieken’) the prediction accuracy also 19 

improves compared to the default parameter set. The new parameter set results in a similar level of accuracy 20 

compared to 𝛿1 and 𝛿2. Overall, the prediction quality of the new set is considered accurate.  21 

 22 

 23 
 24 

FIGURE 2 Prediction accuracy for all disturbance cases used in the calibration and validation phase. 25 

The distribution of the prediction accuracy of all 𝑳 ∗ 𝒕 cases is shown for all four disturbed scenarios 26 

using the default and new proposed parameter set. 27 
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4.2 Reflection 1 
In this study the accuracy of predicting the impact of temporary track closures on the number of passengers 2 

and passenger-distance is substantially improved by using the new proposed parameter set. The prediction 3 

accuracy might be improved further in two ways. First, in this study a two-step search procedure is applied 4 

to evaluate the prediction quality of several parameter sets. After scanning the solution space using a 5 

systematic search over different combinations of parameter values first, an in-depth search around 6 

promising parameter values is performed. In order to further optimize the parameter set, it is recommended 7 

to estimate a discrete choice model based on the revealed preference smart card data found for several 8 

disturbances. This can lead to a set of parameter values which fit the empirical data in an optimal way. 9 

Second, it is recommended to investigate whether location-specific, and/or purpose-specific parameter 10 

values increase the prediction accuracy. In this study only generic and mode-specific parameter values are 11 

applied. Distinguishing between areas where a disturbance occurs based on socio-economic characteristics 12 

(e.g. age, income, percentage of public transport captives) might lead to better predictions. Also using 13 

different parameter values for different passenger segments based on their trip purpose, or based on 14 

different time periods (peak/off-peak, weekday/weekend) might improve the prediction accuracy, since 15 

sensitivities for different parameters might be different for these segments.  16 

 17 

5. CONCLUSIONS 18 
In this study we investigated the passenger impact of planned disturbances by comparing predicted and 19 

realized public transport ridership using smart card data. Based on the study results we found a more 20 

negative in-vehicle time perception in rail-replacing bus services compared to in-vehicle time perception in 21 

the initial tram line. One minute tram travelling shows to be perceived as about 1.11 minute travelling in a 22 

rail-replacement bus service. Besides, when modelling rail-replacement services, it is recommended to use 23 

the frequency of the initial tram line instead of the usually higher frequency of the rail-replacement 24 

services. Passengers do not seem to perceive this theoretical benefit of higher frequencies of the 25 

rail-replacement bus, since this compensates for the lower vehicle capacity of a bus compared to a tram. If 26 

vehicle capacity is not incorporated in the prediction model, only incorporating the positive effect of a 27 

higher bus frequency aimed to compensate for this non-incorporated capacity effect would overestimate the 28 

level of service of the rail-replacement bus service. At last, no higher waiting time perception for temporary 29 

rail-replacement services could be found, compared to waiting time perception for regular tram and bus 30 

lines. The new parameter set leads to substantially higher prediction accuracy compared to the default 31 

parameter set, and shows to be a valuable tool for public transport operators. The prediction model is used 32 

by HTM in practice, in which the parameter set as recommended in this study is applied. Monitoring and 33 

further improving the prediction accuracy of the model will remain an important focus in the future.  34 
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