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Abstract 

Service reliability is a key performance measure for transit agencies in increasing their service 

quality and thus ridership. Conventional reliability metrics are established based on vehicle 

movements and thus do not adequately reflect passenger’s experience. In the past few years, the 

growing availability of smart card data allows shifting the reliability measures from vehicle’s to 

passenger’s point of view.   

This research introduces two new passenger-oriented measures of transit travel time reliability 

and a method to measure them using on-board smart card transactions data. These measures reflect 

both punctuality (deviation from the schedule) and predictability (day to day variation) of the service 

over the selected spatial-temporal scale. The analysis approach and the mathematical formulation are 

presented and then applied to the public transport network of The Hague, the Netherlands. The 

developed method can evaluate passenger-oriented reliability at various spatial-temporal levels, from 

a single origin-destination pair to a network-wide evaluation. 
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1. INTRODUCTION 

Travel time reliability is widely accepted as a key determinant of transit service performance for 

both operators and travellers. Walker (1) has defined reliability as “Our ability to trust a transit 

operation”. Similarly, Abkowitz (2) described it as “the invariability of service attributes which 

influence the decisions of travellers and transportation providers”. In this regard, transit agencies are 

increasingly seeking to improve the reliability of transit services so as to positively influence 

passengers’ experience and achieve a higher transit ridership. Depending on the available data and 

transit operator’s policy about reliability, various reliability metrics are used in different cities.  

Over the past few years, as the corollary of using smart card Automated Fare Collection (AFC) 

to collect revenues, the availability of massive and disaggregated passenger’s transactions data for 

transit planning and operational purposes has significantly increased. Depending on the fare collection 

scheme, invaluable source of travellers’ data such as departure and arrival times, passenger’s origins 

and destinations, selected transit routes, and transfers information are available or can be inferred by 

applying a series of assumptions. As a result, AFC data has attracted a lot of attention by transit 

agencies and researchers in the last several years. Pelletier, et al. (3) performed a comprehensive 

literature review on smart card data and showed their range of application, from strategic to tactical 

and operational levels. Amongst the studies that relied on smart card data, origin-destination demand 

estimation (e.g.4), travel patterns identification (5), ridership prediction (6), activity detection (7) and 

reliability measures (8-14) can be mentioned. In the case of the latter, AFC data can not only provide 

a better and more accurate measure of the existing indicators, but new reliability metrics can also be 

defined for a better representation of service performance for its users. Implementation of passenger-

oriented reliability metrics is amongst the new possibilities AFC data has provided for transit 

agencies.  

An increasing trend to shift from service-based reliability metrics to passenger-oriented ones can 

be seen in the literature (e.g. 12, 13, 15, 16). This is mainly due to the supply-oriented nature of 

traditional measures of variability and their potential discrepancy from the reliability when accounting 

for passengers’ travel patterns. Consequently, policies and strategies designed to improve service 

reliability may not necessarily result with the envisaged effects when considered from passenger’s 

perspective. Such shift toward passenger-oriented metrics thus seems crucial to reach a higher 

ridership and increasing agencies revenues. 

Numerous measures of travel time reliability are developed and implemented in practice. Diab, 

et al. (14) performed a comprehensive literature review on bus service reliability and classified these 

measures into passengers’ and transit agencies’ perspective. In another study, Gittens and Shalaby 

(17) performed a review on the existing user-based reliability indicators and presented them through 

five different classes (travel time, schedule adherence, headway regularity, wait time, and composite 

indicators). They identified travel time and waiting time variabilities as the chief indicators of a transit 

service reliability. In another study, van Oort (11) conducted a survey to see how transit agencies 

measure their service reliability in practice and reported that the existing measures are mainly based 

on vehicle data. He observed the lack of a passenger-oriented measure of transit reliability in practice 

and accredited its necessity for a transit agency, suggesting AFC implementation as a viable dataset 

to develop and utilize reliability metrics in practice. To consider passenger impacts, Van Oort (18) 

suggested two metrics focusing on the extension of passenger travel time and its distribution. 

Similarly, Lee, et al. (19) deal with one of the shortcomings of supply oriented metrics, being 

transfers. They perform analyses of service reliability of multi-leg journeys. 

 

A couple of studies proposed reliability metrics based on passenger’s travel time experience. 

These metrics reflect the predictability of the service for the passengers based on their experienced 

travel times.  Uniman, et al. (9) defined the Reliability Buffer Time (RBT) measure as the time a 

passenger should allocate as buffer time to secure on time arrival to their destination with a pre-

specified degree of uncertainty. They suggested the difference between 95th and 50th percentile travel 

time values as the representative of typical and acceptable levels, respectively. They extended this 

work by classifying the performance into recurrent and incident-affected ones. Then they introduced 

Excess Reliability Buffer Time (ERBT) metric as the difference between 95th percentile travel time 
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values in overall (i.e. including incident affected records) and typical dataset. These measures are 

appropriate in the context of high frequency services where passenger arrival pattern can be 

considered to be uniform. 

In conjunction with predictability metrics, Transit service punctuality (i.e. adherence to the 

timetables) ones are the second category of the transit travel time variability, reflecting how close the 

service is to the promised (i.e. scheduled) one. London Underground defined Excess Journey Time 

(EJT) as the difference between the scheduled and experienced arrival time to the destination. It can 

be presented as the additional time that may be added to the scheduled travel time due to incidents, 

queuing and crowding delays (12). Zhao, et al. (10) developed this measure and performed a reliability 

measurement on the London rail network (Overground) using Oyster smart card data. Oyster users 

tap their card upon entries and exits of the system thus an assignment module was used to find 

passenger route choices, including transfer locations. In addition, as the tap incidents were happening 

before entering the platform, the data reflect not only the in-vehicle time, but a combination of waiting 

time, queuing delays, in vehicle delays and egress times.  

One common feature of the regularity (e.g. RBT) and punctuality (e.g. EJT) metric is that both 

have been established for the case where smart card data validation is performed at stations. In other 

words, transaction records provide information about the location and time of passenger entrance to 

the system and their exit at destination. Consequently, chosen routes cannot be directly observed and 

models such as assignment tools are used to estimate them. Besides, the available travel time data 

include walking and waiting times. Therefore, as acknowledged by Hendren, et al. (12), such 

reliability metrics do not provide actionable information for the transit agencies. The present work 

thus seeks to address this issue by providing a framework for delivering a practical reliability measure 

for transit agencies and operators. Furthermore, as the developed method is relying on in-vehicle 

taping system, detailed data about transfers helps forming a more realistic measure of passenger-

oriented reliability. 

This research introduces and implements two passenger-oriented measures of transit travel time 

reliability using smart card data. These measures correspond to user experience of punctuality 

(deviation from the schedule) and predictability (day to day variation) of the service for any spatial-

temporal level of interest. The main contributions of this paper are: 

 Developing a passenger-oriented transit reliability metric in terms of both regularity and 

punctuality 

 A method for measuring transit reliability indicators from raw smart card transactions 

dataset 

 A tool to measure service variability for any targeted time period, mode, line, and area of 

interest 

 Demonstrating the analysis approach by measuring the performance of transit service in The 

Hague, the Netherlands 

 

The rest of the paper is organized as follows. In Section 2, firstly the proposed reliability measures 

and mathematical formulations to calculate and scale them are presented. Then, the analysis 

framework and data preparations are described. Section 3 presents the application of the developed 

tool and reliability metrics to measure the reliability of the public transport network in The Hague, 

the Netherlands, followed by a discussion on the results. The paper is concluded by summarizing the 

findings and suggesting directions for future research. 

2. METHODOLOGY 

This Section elaborates the proposed passenger-oriented reliability metric and the steps required 

to derive them from AFC data. Firstly, two reliability measures, reflecting regularity and punctuality 

of the service as a passenger point of view are introduced. Mathematical formulation of these metrics 

as well as their scalability to have aggregated measures (e.g. reliability of a specific line or mode) are 

then provided. Then, the developed tool to measure the reliability metrics is introduced and key data 

processing and inference challenges and remedies to tackle them are explained.  
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2.1. Passenger Oriented Measure of Reliability 
The approach in this study is to directly deduce service reliability from observed passenger 

trajectories. The two proposed reliability indicators of this paper target passenger-oriented 

predictability (day to day variation) and punctuality (deviation from the schedule). The former 

considers day-to-day variations in travel experience, whilst the latter refers to the discrepancy from 

scheduled travel times. The measures are calculated at origin-destination stop level and can then be 

scaled to measure the travel time reliability of a stop or terminal, a set of selected stops (e.g. bus stops 

along a route), or the whole network. The latter is particularly relevant for monitoring and assessing 

service performance by comparing how network performance evolves and benchmark the 

performance by comparing different networks. 

The measures are formulated and implemented for a fare collection scheme where passengers 

validate their card upon boarding and before alighting each vehicle. The metrics account thus for 

service arrival time variability as well as transfer coordination. The time interval between the first in-

vehicle tap-in to the last in-vehicle tap-out is therefore considered, including transfer times but 

excluding the initial passenger waiting time as well as access and egress times from and to origin and 

destination stops. The approach taken in this study is to analyse passenger travel time reliability in 

terms of extreme events which were found to have a disproportional effect on traveller perception and 

future choices (20). 

The following notations were used throughout this paper to refer to the aforementioned attributes: 

𝑛 ∈  𝑁 Recorded smart card transaction 𝑛 in smart card set N 

𝑠  ∈  𝑆  The stop where either check in or check out is recorded there 

𝑙  ∈  𝐿  Set of defined transit routes in the network 

𝑡𝑛,𝑖
𝑜  tap out time passenger n at stop i  

𝑡n,𝑖
𝑐  tap in time passenger n at stop i  

𝑙𝑛,𝑖 Transit route that passenger n is boarded at stop i 

𝑟𝑡,𝑖
𝑙  Trip id of scheduled line l service to arrive at stop i at time t 

Daily variability of passenger travel time 

The first metric measures the daily variability of trip travel time for a given time of the day. From 

passenger point of view, it is important that trip travel times are predictable (i.e. past experiences are 

indicative of future ones) and exercise little day to day variation so that expectations concerning 

arrival times at the destination are met. Similar to the reliability buffer time (RBT measure) introduced 

by Uniman, et al. (9) to evaluate rail service regularity, a Daily Variation reliability (DV) metric was 

developed based on on-board tapping scheme to reflect the effect of vehicle’s operation on passenger 

travel time reliability. In addition to the in-vehicle travel time variability, DV measure reflects the 

effect of coordinating services for possible transfers. 

The DV metric reflects the regularity of a service based on the experience of the passenger over 

a period of time. It measures the ratio of an upper percentile (𝜍) and the travel time in typical 

conditions as the indicator of trip travel time variability. For a given OD-Pair i and j, the daily variation 

measure during a targeted period of the day (𝜏) is formulated as follows: 

 
𝑅𝑖,𝑗

𝐷𝑉(𝜏) =
𝑘

𝜍
(𝑡𝑡𝑖,𝑗) − 𝑘𝑡 (𝑡𝑡𝑖,𝑗)

𝑘𝑡 (𝑡𝑡𝑖,𝑗)
                            

 

1 

 𝑡𝑡𝑖,𝑗 = {𝑡𝑛,𝑗
𝑜 − 𝑡𝑛,𝑖

𝑐 |𝑡𝑛,𝑖
𝑐  ∈ 𝜏, 𝑛 ∈ 𝑅𝑖,𝑗(𝐷)} 

 

2 

 

Where  

𝑅𝑖,𝑗
𝐷𝑉(𝜏) Passenger oriented regularity index for OD pair i,j during time period 𝜏 

𝑘
𝜍

(𝑡𝑡𝑖,𝑗) Upper percentile 𝜍 of travel time sets between OD pairs i and j  

𝑘𝑡 (𝑡𝑡𝑖,𝑗) Representative percentile of the typical travel time between OD pairs i and j 

𝑅𝑖,𝑗(𝐷) All the available journeys between OD pairs i and j in analysis days 𝐷  
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The 95th percentile and the median(i.e. 50th percentile) were suggested by Uniman, et al. (9) as 

the upper(𝜍) and typical(t) percentile of travel times, respectively. Wood (13) also used the 95th 

percentile threshold, suggesting that passengers find a once a month chance of late arrival acceptable. 

This metric therefore measures the extent to which abnormal unusual travel time experiences deviate 

from the central value of the travel time distribution for which there is the same number of longer 

travel times as there are shorter travel times. In order to enable the scalability of the metric for different 

OD pairs, time periods, modes and systems, the DV measure is presented as a dimensionless indicator. 

Consequently, 1 minute variability in a 5 minute service and 10 minutes variability in trips that has a 

median value of 50 minutes are identical.  

Deviation from scheduled travel time 

The second reliability metric reflects the punctuality of the service within a defined time period. 

This measure, defined as passengers based Schedule Deviation (SD) measure, reflects the deviation 

of individuals’ actual travel time from the scheduled one. Having a sufficient sample size for each 

OD pair, the SD measure is defined as the ratio of the excess delay to travel time at a targeted 

percentile (e.g. median or 95th). For a given origin-destination pair, travel time punctuality is 

measured using the following formulation: 

 𝑅𝑖,𝑗
𝑆𝐷(𝜏) = 𝑓𝑠𝑑

̅̅ ̅̅ (𝑡𝑛,𝑖
𝑐 , 𝑡𝑛,𝑗

𝑜 , 𝑡𝑛,𝑖
𝑝

, 𝑡𝑛,𝑗
𝑝

 )         ∀ 𝑡𝑛,𝑖
𝑎  ∈ 𝜏 , 𝑛 

∈ 𝑅𝑖,𝑗 

 

3 

 
𝑓𝑠𝑑(𝑡𝑖

𝑐 , 𝑡𝑗
𝑜, 𝑡𝑖

𝑝
, 𝑡𝑗

𝑝
 )= 

𝑘
𝜍

(𝑡𝑡𝑖,𝑗−𝑡𝑡𝑖,𝑗
𝑝

)

𝑘
𝜍

(𝑡𝑡𝑖,𝑗)
 

 

4 

 𝑡𝑡𝑖,𝑗 = {𝑡𝑛,𝑗
𝑜 − 𝑡𝑛,𝑖

𝑐 |𝑡𝑛,𝑖
𝑐  ∈ 𝜏, 𝑛 ∈ 𝑅𝑖,𝑗} 

 

5 

 𝑡𝑡𝑖,𝑗
𝑝

= {𝑡𝑛,𝑗
𝑝

− 𝑡𝑛,𝑖
𝑝

|𝑡𝑛,𝑖
𝑎  ∈ 𝜏, 𝑛 ∈ 𝑅𝑖,𝑗} 

 

6 

Where: 

𝑅𝑖,𝑗
𝑆𝐷(𝜏) Passenger oriented punctuality index of OD pair i,j during time period 𝜏 

𝑡𝑡𝑖,𝑗 Observed travel times between OD pair i,j 

𝑡𝑡𝑖,𝑗
𝑝

 Scheduled travel times between OD pair i,j 

𝑡𝑛,𝑗
𝑝

 scheduled arrival time of passenger n to stop j 

 

The calculated SD measure needs more parameters and calculations to be calculated as a 

connection between passenger trajectories and service timetables has to be formed. For a transferred 

trip, in addition to origin and destination stops, considering transfer points, routes, and walking times 

are also imperative and calculations are more costly. In this study, SD measures were calculated for 

𝜍 = 50 and 𝜍 = 95, representing the median ratio of variability and the one that passengers may 

experience 5% of their time, respectively. Section 0 shows the details of the procedure to extract 

scheduled travel time for each journey. 

Scaling the measures 

The measures that were introduced in previous section estimate the reliability of the service for 

each origin-destination pair. These values can be aggregated to represent the variability of any set of 

trips. In this study, three levels of aggregation, namely bus stop level, transit lines level and network 

level are studied using the following formulations: 

 

 
R𝑠 (𝜏) =

∑ 𝑅𝑠,𝑗(𝜏) ∙ 𝑞𝑠,𝑗(𝜏)𝑗∈𝑆

∑ 𝑞𝑠,𝑗(𝜏)𝑗∈𝑆

 
7 
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R𝑙 (𝜏) =

∑ ∑ (𝑅𝑖,𝑗(𝜏) ∙ 𝑞𝑖,𝑗(𝜏))𝑗∈𝑆𝑙𝑖∈𝑆𝑙

∑ ∑ 𝑞𝑖,𝑗(𝜏)𝑗∈𝑆𝑖∈𝑆
 

8 

 
R𝑀(𝜏) =

∑ ∑ (𝑅𝑖,𝑗(𝜏) ∙ 𝑞𝑖,𝑗(𝜏))𝑗∈𝑆𝑖∈𝑆

∑ ∑ 𝑞𝑖,𝑗(𝜏)𝑗∈𝑆𝑖∈𝑆
 

9 

 

Where: 

R𝑠 (𝜏) Measures of reliability(either DV or SD) for stop s 

𝑞𝑖,𝑗(𝜏) Number of passengers travelling from stop i to j at time period 𝜏 

R𝑙 (𝜏) Measures of reliability(either DV or SD)  for line l 

R𝑀(𝜏) Network level measure of reliability(either DV or SD)   

𝑆𝑙 The set of stops of line l 

2.2. Tool for Analysing Passenger-Oriented Reliability  
A set of input data and preliminary tasks, metrics, and post-calculations are required in order to obtain 

the proposed reliability indicators. Figure 1 illustrates the analysis framework, consisting of the 

required input data and data preparation and analysis steps in yielding passenger-oriented measures 

of transit service reliability. In this section we elaborate the components of this framework. An 

application of this framework is presented in section 3 to demonstrate how the tool can be used to 

evaluate network performance.  

 
Figure 1 Proposed method to calculate passenger-oriented reliability 

Input Data

Data Analysis and Reliability Measures Calculations

Data Preparation

Scaling measures

Proposed Measures For Each Origin Destination Pair:

Journey patterns 
recognition

data cleaning

Joining Databases
(HTM to GTFS)

Travel 
journeys

Skim(transfer time) and 
Demand Matrices

Processed GTFS 
lookup table

Reliability of the Stops and Stations

network reliability measure

Extract Transfer Times 
between stops

Bus stops locations 
and definitions

OV-Chipkart 
Transactions

Transit Network 
Layout(GTFS)

Transit Service 
Timetables

Passenger Oriented Daily 

Variation(DV) Measure

Passenger Oriented 
Schedule Deviation(SD) 

Measure

Calculate DV measureCalculate SD measure

Clusters measure(e.g. bus or tram measures)
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Input data 

The presented methodology relies on three datasets: (1) recorded passenger transactions; (2) 

transit service timetables, and; (3) network layout including the stops locations and transit lines.  

The main dataset is the smartcard transaction (SCT) data, recorded for each leg of the trip. 

Excluding cases with missing data, the raw data includes the time and location of passenger boarding 

and alighting, the transit line of the respective vehicle, and the passenger encrypted id. In order to 

deduce information about passenger travel time reliability, passengers’ journeys need to be 

systematically inferred from single leg transactions.  

General Transit Feed Specification (GTFS) (21) provides all the required data on network layout 

and service timetables as a set of standard CSV files. This data is processed to infer the scheduled 

service that is considered in SD (Eq. 3) when contrasting the planned and provisioned trip travel time. 

In contrast, the DV measure relies solely on transaction data. 

Transaction datasets need to be pre-processed to extract the reliability metrics. Data preparation 

serves four main goals: removing outliers from missing values and incorrect records, forming 

journeys, linking transaction data with other datasets, and optimizing database structures to enable 

fast queries. These procedures are discussed in the following sub-sections. 

From smartcard validations to passenger journeys  

The very first step in data preparation process is to derive journeys from the tap-in-tap-out 

transactions. To do so, it is necessary to cope with data outliers. A series of filters was applied to 

handle outliers. After excluding data that contains missing values (e.g. missing tap-in or tap-out, no 

line identifier), Procedure 1 (Figure 2) is applied to construct the journey database. This procedure 

involves the specification of three parameters. Firstly, a minimum value of leg duration time (𝛾𝑚𝑖𝑛
𝑙𝑒𝑔

 ) 

was defined to exclude transactions with short durations that are prone to fallacious records. The 

second parameter is the maximum duration of a single leg (𝛾𝑚𝑎𝑥
𝑙𝑒𝑔

) to filter the trips that are abnormally 

long, mainly due to systematic error in recording the tapping timestamp. Finally, 𝛾
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

 is defined 

as the time interval between two successive legs with same card ID to classify the set of trips an 

individual performs on a given day into journeys. The output of this procedure is a database of the 

identified journeys, including an ID, date, number of transfers, and a list of details (line id, tap-in time 

and location, tap-out time and location) for each leg.   

 

Procedure 1: Forming Journeys Database 

Remove transactions with same location of tap-in and tap-out 

Remove transactions between stops i,j with  𝒕𝒏,𝒊
𝒐 − 𝒕𝒏,𝑗

𝒄 < 𝛾𝑚𝑖𝑛
𝑙𝑒𝑔

  

Remove transactions with abnormally long durations 𝒕𝒏,𝒊
𝒐 − 𝒕𝒏,𝑗

𝒄 > 𝛾𝑚𝑎𝑥
𝑙𝑒𝑔

 

 

For each day in analysis period: 

Group transactions using card ID 

 

For each group: 

  Sort transactions using check-in timestamp 

  For each transaction rn in Rn : 

   Form journey if 𝒕rn
𝒄 − 𝒕r−1n

𝒐 < 𝛾
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

 

   For each journey: 

    Calculate transfer times using walking distance 

    Calculate the number of transfers 

    Add journey to database 

 
Figure 2 Developed Procedure to form journeys from transaction dataset 

From passenger journey to reliability metrics 

After the journey database has been generated, it is possible to obtain the DV metric for any given 

time window-location. However, to calculate the SD metric, journeys need to be matched to the 
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timetable dataset. This section first presents the approach adopted for linking the two datasets. Then, 

the algorithm for deriving the scheduled arrival time for each journey is described. Finally, a heuristic 

approach for restructuring the dataset in order to speed the processing time is presented. 

Matching passenger journeys and service timetables 

One of the necessary tasks of this study was to form a link between definitions of stops and lines 

and similar attributes in smart card transactions as these two databases was not consistently related to 

each other. To address this issue, a one-to-many line matching procedure was adopted so that a set of 

candidate GTFS lines was identified for each service line identified in the smartcard data. In each 

iteration the corresponding line is selected by considering the time discrepancy between the line 

recorded in the smartcard data and the scheduled arrival time of each of the candidate lines. 

A similar approach was used in matching the stops in the two databases. The stops included in 

the SCT database refer often to both directions of the same line or a number of platforms. In this 

procedure, using stop coordinates, for each stop in the SCT database a set of GTFS stops was selected. 

The elements of this set were selected by applying two basic rules: 

1. A GTFS stop is within an acceptable distance  (ed ) from the SCT stop 

2. There is at least one common line that serves both stops 

For each transaction, the corresponding stop for each leg (tap-in or tap-out) was identified by 

checking if a corresponding trip can be made from origin stop to the destination one using the recorded 

transit line. In the unlikely event that more than one GTFS stop qualifies, the closest one (i.e. the stop 

that cause the minimum additional delay) is selected. The walking distances are then calculated 

between the stops introduced into the SCT database. Consequently, walking distances between the 

stops with same "parent-station” are uniformly assigned with a minimum value,𝛾𝑚𝑖𝑛
𝑤 , representing  

the minimum required time to perform a transfer. 

Path Finding Algorithm 

A path-finding algorithm is required for estimating the scheduled time of the service 

corresponding to each transaction. Using the boarding and alighting stops, service timetable, and the 

transit line of each leg of a journey, walking distance between the stops, and the timestamp of the first 

check-in, the corresponding scheduled journey can be inferred. A procedure was developed for 

obtaining the scheduled boarding and arrival times (𝑡𝑛,𝑖
𝑝

, 𝑡𝑛,𝑗
𝑝

) for a direct (i.e. single leg) journey. For 

a given leg, firstly the corresponding candidate stops was determined. For each candidate stop pair, 

the connectivity via the recorded route name was checked. Then, the provided services that could 

potentially serve the passenger n were extracted. Finally, the service with minimum buffer from 𝑡𝑛,𝑖
𝑐   

were identified and its timetable was used as 𝑡𝑛,𝑖
𝑝

 and 𝑡𝑛,𝑗
𝑝

 values. For a given tap-in time, the 

corresponding scheduled trip arrival time is determined by minimizing the discrepency from 

passenger boarding time. This inference rule relaxes the assumption that the order in which buses 

arrive at stops corresponds to the order indicated in the timetable, reflecting the possibility of 

overtakings. 

A method to calculate the scheduled travel time was also developed for non-direct journeys. In 

this regard, given a first tap-in time and a trajectory (lines and stops) as the arguments, a sequential 

procedure was designed for determining the scheduled arrival time at the destination. The transfer 

walking time is estimated based on the adjusted aerial distance between transfer points where a root 

of 2 was multiplied by the walking distances to convert aerial distances to distances on the network. 

Figure 3 illustrates a journey with one transfer and the procedure used for determining scheduled 

arrival times. 
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Procedure 2: scheduled arrival time calculation procedure 

For each journey in analysis period: 

If (n_transfers=0) 

 𝑡𝑛,𝑖
𝑝

= 𝑡
𝑖

𝑟𝑛,𝑖    

 𝑟𝑛,𝑗 = 𝑟
𝑖

𝑙𝑗 (𝑡𝑛,𝑖
𝑝

)    

 𝒕𝒏,𝒋
𝒑

= 𝑡
𝑗

𝑟𝑛,𝑗
 

 

Else: 

For each transfer y in Y: 

  Calculate transfer distance 𝑡𝑦𝑖
𝑤  

 𝑡𝑛,𝑖
𝑝

= 𝑡
𝑖

𝑟𝑛,𝑖 

Set 𝑡n
𝑐𝑢𝑟 = 𝑡𝑛,𝑖

𝑝
 

 

for each stop 𝑠𝑛  𝑖𝑛 𝑆𝑛 

𝑟𝑛,𝑠𝑛
= 𝑟𝑠𝑛−1

𝑙𝑠 (𝑡n
𝑐𝑢𝑟) 

 𝑡n
𝑐𝑢𝑟 = 𝑡𝑠𝑛

𝑟𝑛,𝑠+𝑡𝑠𝑛
𝑤  

𝑛𝑒𝑥𝑡 

𝒕𝒏,𝒋
𝒑

= 𝑡n
𝑐𝑢𝑟 

Figure 3 generic method to calculate the scheduled arrival time of the journeys 

 

Once the scheduled arrival times of each journey are calculated, the measure of reliability for 

each OD pair for a given time period can be obtained. Unlike the DV measures that is derived from 

travel time distribution and thus requires a set of data for different days, the SD measure can be 

calculated for any individual journey since the timetable is used as the benchmark.  

Restructuring datasets 

The computational costs and feasibility of query and metrics calculation within a reasonable 

amount of time can become prohibitive for large datasets such as SCT. In the initial implementation 

of the proposed method, using the existing SCT database (transformed and optimized using SQL 

Server) and GTFS data files (loaded into memory once the software is initialized), the elapsed time 

for each query was noticeably high, refraining the evaluation of the simplest queries. For instance, 

running the program for two hours resulted with SD measures for around 2500 records, less than 0.05 

percent of the monthly number of records. To improve the querying speed, two indexed look-up tables 

were formed to load journeys and timetables into memory and achieve a significant saving in 

computational cost of each query. Since the date and stop id are the two essential arguments for all 

queries, a two dimensional array with the size of D and S was formed and timetable and transactions 
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were loaded into this array in the initialization phase. Consequently, instead of searching over all days 

and all the stops for a corresponding line and time period, the search is conducted over the line and 

time period only. This improvement allows in the case study application to perform queries in a 

fraction of the time initially required (almost 30000 times faster). This made it possible to attain SD 

metrics for a typical AM peak period in a fraction of a second. 

Passenger Reliability Tool Interface 

The developed tool and metrics to evaluate passenger-oriented reliability of the transit service is 

available as a standalone executable application. The tool offers analysts, planners and decision 

makers an interface to obtain the results at the spatial-temporal level of interest. Figure 4 shows a 

screenshot of the interface. The application is using the language integrated querying (LINQ) 

component, allowing users to dynamically filter the target days, stops (origin and/or destination), 

mode sequence (e.g. bus, tram, first bus and then tram, etc.), analysis period (e.g. time of day, day of 

the week, specific dates), and transit line. Such flexibility along with the instant generation of 

passenger reliability metrics empowers transit operators and agencies by having a direct insight into 

the performance of the whole the network and individual network elements. 

 
Figure 4 Main Interface of the developed Passenger-Oriented Reliability Measurement Tool 

3. APPLICATION  

This section shows the procedure and results of applying the suggested framework (including 

reliability metrics) on the The Hague transit agency’s (HTM) services. This network consists of 12 

tram and 8 bus lines and 923 stops (Figure 5). Transaction data from a single month (March 2015) 

period containing 8,177,434 records were analysed in this study. More details on the utilized 

smartcard data may be found in Van Oort et al. (2015). A representation of the network including the 

stops and defined routes can be found in http://gtfs.ovapi.nl/htm/gtfs-kv1htm-20150227.kmz. Using 

the developed tool, a study was performed using a top-down approach, to find out the sources of 

variability in the network during the analysis period. 
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Figure 5 the public transport network of The Hague 

 

In this section, firstly a review on the data preparation process is shown. Then, the descriptive 

statistic of the passenger trips, transferring behaviours, and spatial distribution of the demands are 

presented.  The results of using daily variation and schedule deviation metrics to estimate passenger-

oriented reliability of the service is then elaborated and discussed. 

3.1. Descriptive Analysis of Transfer Patterns 
The method to form passenger journeys database from transactions records (Figure 1) was 

applied to HTM database from March 2015. To remove the outliers, the incomplete transactions, the 

taps in same stop, and the ones outside the defined range of 60 seconds to 60 minutes (i.e. 𝛾
𝑚𝑖𝑛

𝑙𝑒𝑔
=

1𝑚𝑖𝑛, 𝛾
max 
𝑙𝑒𝑔 = 60𝑚𝑖𝑛, respectively) were excluded from the database. As a result, less than 1% of the 

records were discarded in the analysis. To compose the journeys, the definition established by the 

local public transport operator - identifying transfer for transactions within a time interval of up to 35 

minutes (as 𝛾
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

) between two successive check-out and check-in - was adopted. Consequently, 

the procedure resulted with 6,265,185 journeys in the analysis period.  

Figure 6 shows how the tap-in and tap-out times as well as average travel times varies over the 

day. The AM peak period is characterized by a short and well-defined peak a in passenger load, 

whereas the PM peak period builds up over a long period and peaks at a level similar to the AM peak 

followed by a moderate decline. This pattern can be presuambly attributed tot he high share of part-

time workers in the Netherlands. Journey duration (from first boarding time to last leg alighting time) 

is within the range of 15 to 20 minutes during most of the day.  
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Figure 6 Daily Pattern of check-in, check-out and journey duration 

 

Figure 7 shows the distribution of the observed transfer times. A pronounced peak can be 

observed at 3-4 minutes interval and 50% of the journey include transfer times that exceed 6:47 

minutes. The average transfer time per journey is 9:35 minutes due to the long tail of the distribution 

which is sensitive to the transfer threshold parameter(𝛾
𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

). Note that the transfer times is 

calculated as the difference between two successive tap-out and tap-in in all the trips with transfer. 

Consequently, the transfer time includes the walking time between the stops as well as waiting fort 

he downstream leg. 

 
Figure 7 Distribution of Transfer Time Durations 

 

Journeys were classified based on their number of transfer. Figure 8 shows the share and the 

travel time distributions of each class. It can be seen that around 80.5% of the trips are identified as 

direct journey that do not involve any transferring and journeys with one and two transfers have 17.1% 
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and 1.8% of total number of journeys, respectively. Only 0.6% of the journey were found to comprise 

of more than two transfers.  

 
Figure 8 Travel time by number of transfers and a break-down of the journeys by number of transfers 

 

Demand spatial distribution was also investigated using the origin and destination of the trips and 

their corresponding coordinates. Figure 9 shows the schematic map of the trip generation on an 

average weekday. As can be seen, a significant ratio of the demand is originates at few stops. In fact, 

20% of the bus stops accounted for the generation of more than 70% of the trips. An analysis of the 

demand matrix indicates that all the journeys recorded during the analysis period were associated with 

merely 18% of the possible OD pairs in the case study area. This uneven demand distribution stresses 

the importance of using passenger-oriented measures in evaluating service performance. 

 

 
Figure 9 Schematic View of Demand Distribution across the case study network(Based on smart card data) 

 

The main output of the data preparation module is the journey database that can be used to 

measure reliability for various spatial-temporal levels, as illustrated and discussed in the following 

section.  
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3.2. Results 
The proposed framework along with the passenger-oriented reliability metrics was implemented 

for the HTM dataset. According to the operator’s records, no major incident or failure occurred during 

the analysis period and services generally operated as planned”. In the following, we present the 

results of our analysis at a network-wide level for the entire month of March 2015 as well as an 

illustration for a specific instance which is used to illuminate the potential insights that can be gained 

by further investigating the spatial and temporal variations in service performance.   

The DV metric was first calculated for different days and time periods. For each OD pair, the DV 

measure was calculated if the sample size exceeds a pre-defined value (10 observations here) using 

Equations 1-2. The values were then scaled to the network level using Equations 7-9. Figure 10 shows 

the results of calculating the network level DV for different time periods. It can be seen that during 

the analysis period, AM peak travellers experienced more reliable services than during other periods 

if they rely on the total journey time experienced on former trips on the same day of the week. For 

example, extremely long travel times on weekdays are 25% longer than the median travel time during 

the afternoon peak period. It can also be observed that travellers have the highest level of variability 

on Monday morning and afternoon as well as Friday PM peak compared with the corresponding time 

periods on other days of the week, suggesting that the start and end of the working week are subject 

to more unusual travel conditions.  

 
Figure 10 Comparison of Travel Time Predictability Measure (DV) for Different Days of the Week 

 To gain a better insight into the daily variation patterns, the SD of the AM peak period was 

calculated for each day of the month and is displayed in  

Figure 11. In addition, the corresponding passenger load across the network is depicted. Most 

weekdays are characterized by a SD value in the range of 0.25-0.35. This implies that 5% of the 

passengers experience a travel time that is 25 to 35% longer than the scheduled journey travel time. 

In other words, an average commuter will experience once in two weeks a travel time that exceed by 

more than 25% the travel time expected based on the schedule. It can be observed that weekends are 

characterized by lower demand levels and higher service reliability. Notwithstanding, lower service 

reliability does not necessarily occur when higher passenger loads are observed. For example, March 

25 has a highest level of SD, although it is not the day that experienced the highest demand level. 

This day, along with March 18 which can be considered a representative of a typical day for 

comparison purposes, were selected for further investigation.  
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Figure 11 Passenger Load and Network Level Reliability Measure in Different Days (AM Peak Period) 

Passenger reliability by mode 

The HTM transit network consists of 12 tram and 8 bus lines. Reliability was analysed for each 

mode separately to compare their performance and the results are presented in Table 1. In addition to 

the higher passenger load, it can be seen that the reliability of buses and trams was worse on March 

25 than on March 18. Comparing buses and trams, it can be seen that for passengers, trams were 

consistently less reliable than buses during the AM peak period of the selected days. To find out the 

reason of experiencing such variability in tram lines, further analysis was performed. 

 
Table 1 Reliability Measures of Buses and Trams in AM Peak Period(7:30-8:30AM) 

MEASURE MARCH 18TH MARCH 25TH 

  Tram Bus Tram Bus 

Passenger Load 13839 2030 15577 2665 

Travel time [sec] 803 823 822 816 

Absolute deviation 
[sec] 

𝜍 = 50 61 35 96 65 

𝜍 = 95 206 135 305 176 

Schedule deviation 
𝜍 = 50 0.09 0.04 0.16 0.08 

𝜍 = 95 0.31 0.17 0.40 0.22 

Passenger reliability per line 

Schedule deviation was analysed for each specific tram line of the network using Eq. 8. Figure 

12 shows the comparison of SD measure for different tram lines for March 18 and March 25. It can 

be seen that two lines (Line 3 and 4) experienced the greatest deterioration in reliability when 

comparing these two days. Tram Line 4 was selected for a more detailed analysis. 
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Figure 12 Comparison of Tram Lines Reliability Measure in two selected days (Line 4 is highlighted as the 

critical one) 

Passenger reliability for a given line 

The SD measure was calculated for the selected line for the whole analysis period of March 2015. 

As can be seen in Figure 13, line 4 had a SD measure below 0.15 (indicating 15% delay in arrival 

time) for the vast majority of days, with the exceptions of March 25 and March 28. This sudden 

change coincides with a noticeable increase in passenger load on this line. 

 
Figure 13 Passenger Load and Reliability Measure of Tram Line 4 in Different Days of the Analysis Period 

The daily trend of Line 4 was compared in one hour intervals for both March 18 and March 25 

(Figure 14). The SD measure does not follow the AM and PM demand peaks. On March 25, the most 

noticeable change in service reliability of line 4 occurred directly after the AM peak (9 AM- 1 PM) 

and PM peak (6-7 PM).  
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Figure 14 Comparison of Tram Line 4 Reliability Measure between 18th and 25th March2015 

 

Considering the variability changes in different times of the day in smaller intervals (15min), 

9:45-10:15am was identified as the interval where a noticeable increase in service variability of tram 

line 4 occurs. For This period, the SD measure at stop levels was generated for each stop along the 

line. Figure 15 shows a schematic comparison of the person delay changes along the line on a typical 

day (March 18) and the abnormal day (March 25). While service reliability worsened for almost all 

stops during the time period selected for analysis, certain locations experienced a particularly extreme 

increase in passenger delay (denoted by red colour). Such a fine interval-scale insight can help transit 

agencies to precisely identify the variability sources and potentially design measures to mitigate them. 

 

  

 
Figure 15 Person-Delay visualization of tram Line 4 for the targeted abnormal period 

4. CONCLUSIONS 

In this paper, a comprehensive tool to estimate the passenger-oriented measure of transit service 

reliability was presented. This method included two novel metrics to reflect both predictability and 
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punctuality of the network in the selected spatial-temporal window, measured at the passenger journey 

level. The methodology was presented along with the data analytics procedures. With the availability 

of reliability measure at origin-destination level, the method for measuring the reliability at stops, 

lines, transit modes, and for the network as a while was developed as a tool with a user friendly 

interface. While the aggregated level of punctuality and regularity can be derived at the network level, 

disaggregate measures can aid agencies and operators in identifying the locations and times where 

maximum person-delay may occur, as demonstrated in the application. In the absence of tap in and 

tap out transaction data, methods to infer passenger routes and transfer locations need to be included 

in the data preparation and processing data to obtain passenger reliability metrics.  

Passenger-oriented reliability metrics can lead to a paradigm shift in managing transit services from 

planning to operations. The introduction of incentive schemes based on passenger reliability metrics 

rather than vehicle-based performance measures will assist service providers in focusing on remedies 

such as preferential treatments, rescheduling the services, and transfer points coordination where and 

when most needed in terms of their consequences for passengers. Monitoring passenger reliability in 

real-time can facilitate steering operations towards passengers’ experience. Research into passengers’ 

perception of service reliability will enable differentiating between different journey components and 

account for their contribution to the overall passenger experience. Future research will also further 

improve the reports and visualizations produced by the tool. Different networks and transit services 

can be assessed to allow the analysis of performance evolution by comparing with past performance 

as well as benchmarking by comparing with peer networks. Transit agencies can utilize the tool to 

identifying the sources of unreliability by incorporating other sources of information (e.g. 

precipitations, incidents, etc.).  
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