Improving predictions of the impact of disturbances on public transport usage based on smartcard data

Menno Yap, Sandra Nijënstein, Niels van Oort

M.D.Yap@TUDelft.nl

http://nielsvanoort.weblog.tudelft.nl/

Introduction

- Many (un)planned disturbances in public transport (e.g. track maintenance, incidents)
- Important to quantify passenger impact (e.g. extra transfers and travel time) and operator • impact (e.g. loss of passenger revenues) of these disturbances
- Availability of AFC data led to development of smartcard data driven models for PT ridership predictions recent years
- Extend these models to predict PT ridership during track closures

Study objectives

- Improve accuracy of PT ridership prediction models in case of planned, temporary disturbances
- Calibrate and validate model parameter set based on revealed passenger behavior (AFC data)
- Based on 4 large disturbances occurred on HTM transit network in The Netherlands

Experimental design: systematic evaluation of different parameter sets

Parameters	Elasticity E_{δ}	Waiting time WTT ^R	In-vehicle time <i>IVT^R</i>	Frequency
Parameter values	<i>{-0.7, -1.1, -1.5}</i>	{1.5, 2.0}	{1.0, 1.25}	$\{f^{R}, f^{T}\}$
Scenario 1 (default)	-1.1	1.5	1.0	f ^R
Scenario 2	-1.1	1.5	1.0	$MIN(f^{R}; f^{T})$
Scenario 3	-1.1	1.5	1.25	f ^R
Scenario 4	-1.1	1.5	1.25	$MIN(f^{R}; f^{T})$
Scenario 5	-1.1	2.0	1.0	f ^R
Scenario 6	-1.1	2.0	1.0	$MIN(f^{R};f^{T})$
Scenario 7	-1.1	2.0	1.25	f ^R
Scenario 8	-1.1	2.0	1.25	$MIN(f^{R};f^{T})$
Scenario 9	-0.7	1.5	1.0	f ^R
Scenario 10	-0.7	1.5	1.0	$MIN(f^{R}; f^{T})$
Scenario 11	-0.7	1.5	1.25	f ^R
Scenario 12	-0.7	1.5	1.25	$MIN(f^{R}; f^{T})$
Scenario 13	-0.7	2.0	1.0	f ^R
Scenario 14	-0.7	2.0	1.0	$MIN(f^{R};f^{T})$
Scenario 15	-0.7	2.0	1.25	f ^R
Scenario 16	-0.7	2.0	1.25	$MIN(f^{R}; f^{T})$
Scenario 17	-1.5	1.5	1.0	f ^R
Scenario 18	-1.5	1.5	1.0	$MIN(f^{R}; f^{T})$
Scenario 19	-1.5	1.5	1.25	f ^R
Scenario 20	-1.5	1.5	1.25	$MIN(f^{R};f^{T})$
Scenario 21	-1.5	2.0	1.0	f ^R
Scenario 22	-1.5	2.0	1.0	$MIN(f^{R};f^{T})$
Scenario 23	-1.5	2.0	1.25	f ^R
Scenario 24	-1.5	2.0	1.25	$MIN(f^{R}; f^{T})$

Evaluation framework

- # of passengers
- # of pass-km PK
- disruption scenario δ
- base scenario
- realized ridership predicted ridership
- р
- transit line
- time period

Case studies Netherlands: 2 disturbances for calibration + 2 disturbances for validation

Results: new parameter set + improved prediction accuracy during disturbances

Parameter	Default parameter values	New parameter values
Elasticity E_{δ}	-1.1	-0.7
Waiting time coefficient for rail-replacement bus	1.5	1.5
In-vehicle time coefficient for rail-replacement bus	1.0	1.11
Frequency f^{R} of rail-replacement bus	f ^R	$MIN(f^{R}; f^{T})$

Prediction accuracy results

Conclusions

- In-vehicle time perception rail-replacement busses is 1.1 times higher than in initial tram line
- The higher frequency of rail-replacement busses than the initial tram line is not perceived •
- Further research: segmentation of parameter set to disruption location, duration and purpose

Paper 17-04747

Challenge the future

Challenge the future