Posts in category Nederlands

Het verbeteren van de last-mile in een OV reis met automatische voertuigen

De last-mile in een openbaar vervoer (OV) reis is een van de meest hinderlijke gedeelten van een reis per OV. Hierdoor is het OV veelal niet in staat om te kunnen concurreren met de auto. De oorzaak kan deels worden gevonden in het gebrek aan flexibiliteit en de lage snelheden die de veelal conventionele vervoersmiddelen op de last-mile kenmerken. Recente technologische ontwikkelingen maken innovatieve vraaggestuurde vervoersconcepten met zelfrijdende voertuigen mogelijk. Deze zijn onafhankelijk van vaste infrastructuur en zouden ideaal op de last-mile ingezet kunnen worden, om zo het diffuse patroon en lage vervoersvolume efficiënt te bedienen.

Om de vervoerwaarde en de prestatie van een vraaggestuurd vervoersysteem met zelfrijdende voertuigen op de last-mile te bepalen is als case: Station Delft-Zuid – TU Delft gekozen. Bij een vervoerwaarde studie met dergelijke innovatieve techniek wordt verwacht dat psychologische factoren, naast de puur instrumentele aspecten, expliciet een rol spelen in de vervoerwijzekeuze van reizigers. Het meenemen van deze preferenties is daarom van belang, teneinde de vervoerwaarde niet substantieel te over- of onderschatten. In dit paper zijn de uitkomsten van twee onderzoeken gecombineerd, een instrumenteel onderzoek (simulatiemodel + enquête) naar de vervoerwaarde van een systeem van zelfrijdende voertuigen en een stated preference (SP)-experiment om de invloed van diverse psychologische factoren op de vervoerwaarde te bepalen.
De resultaten laten zien dat er een aanzienlijke vervoerwaarde bestaat voor zelfrijdende voertuigen op de last-mile, te weten 57% van de steekproefpopulatie. Met het simulatiemodel zijn diverse ITS maatregelen gesimuleerd, deze maatregelen omvatten wijzigingen in de netwerkstructuur, voertuiggedrag en het reizigersgedrag.
De prestatie van het last-mile systeem, bleek veelal positief beïnvloedt te worden door bovenstaande maatregelen. Effecten werden gemeten in een vergroting van de systeemcapaciteit, een reductie van de gemiddelde wachttijd ofwel van de gemiddelde reistijd. Het parallel toepassen van deze maatregelen realiseert een aantrekkelijkere concurrentiepositie ten opzichte van de conventionele vervoerswijzen. De meest kenmerkende maatregel, het strategisch plaatsen van voertuigen, op locaties voorafgaand aan het ontstaan van vervoersvraag laat een reductie in de gemiddelde wachttijd van 40% zien.
Uit het SP-experiment blijkt dat de attitudes ‘duurzaamheid’ en ‘vertrouwen’ de twee belangrijkste aspecten zijn in de vervoerwijzekeuze, terwijl de in-voertuigtijd niet minder negatief wordt ervaren dan in een door de reiziger gereden carsharing systeem. Dit suggereert dat de gebruikelijk genoemde voordelen van zelfrijdende voertuigen wellicht nog niet worden ervaren door de reiziger van vandaag, en illustreert het belang om hier aandacht aan te schenken voor een succesvolle implementatie van zelfrijdende voertuigen.

Lees het CVS paper HIER

Zie de CVS presentatie HIER

Waar liggen kansen voor OV: datafusie GSM en chipkaart

De grootste uitdaging van de openbaar vervoer sector is om tegemoet te komen aan de verscheidenheid aan reispatronen, en de bijbehorende behoeften en preferenties, van reizigers. Het beter matchen van vraag en aanbod levert zowel een kwaliteitssprong als kostenreductie op en heeft dus alle aandacht. Bestaande databronnen helpen, maar zijn nog niet afdoende. De combinatie van nieuwe bronnen biedt echter hoopgevende resultaten. Door een innovatieve methodiek kunnen GSM- en anonieme chipkaartdata gecombineerd worden om de OV potentie in kaart te brengen.

Bestaande onderzoeken (zoals OViN) geven informatie over de totale reisbehoefte en de ruimtelijke spreiding hiervan. Deze huishoudsurveys bieden veelal echter geen inzicht in de spreiding van deze reisbehoefte over de tijd. Een nieuwe methodiek om GSM- met anonieme OV chipkaartdata te koppelen, geeft die inzichten wel. Door middel van deze datafusie kunnen zowel de ruimtelijke als temporele patronen van OV gebruik vergeleken worden met de totale ruimtelijke en temporele reispatronen. Dit geeft inzicht in de (mis)match van vraag en aanbod in ruimte én tijd. Ideaal dus als eerste stap voor het verbeteren van deze match: OV potentie kan zo worden opgespoord.
Deze methode is toegepast in een case study in Rotterdam om te onderzoeken of het huidige OV bedieningsinterval voldoende aansluit bij de latente vraag. De resultaten demonstreren dat er potentie is om het OV bedieningsinterval zowel in de vroege ochtend als in de late avond uit te breiden. In de vroege ochtend, juist voordat het OV wordt opgestart, kan een uur-tot-uur toename in bezoekersaantallen van 33% tot zelfs 88% worden waargenomen in diverse delen van de Rotterdamse regio. Dit illustreert de potentiële vraag voor extra openbaar vervoer aanbod in de vroege ochtend. Op vergelijkbare wijze is deze analyse uitgevoerd voor het OV aanbod in de late avond.
Deze innovatieve methode van datafusie is van grote toegevoegde waarde te zijn gebleken ter ondersteuning van OV planning. Deze datafusie methode kan ook eenvoudig worden toegepast op andere herkomst-bestemmingsdata.

Lees het CVS paper HIER

Betrouwbare OV netwerken: Reizigersperspectief centraal dankzij anonieme chipkaartdata

Voor het openbaar vervoer is betrouwbaarheid een kwaliteitsfactor van belang.
Terwijl we een beetje vertraging met de auto wel oké vinden, is elk minuutje
dat een bus, trein of tram te laat arriveert, er echt één te veel. Vervoerders en
openbaarvervoerautoriteiten zijn dan ook continu op zoek naar mogelijkheden
om de betrouwbaarheid te verbeteren. Maar hoe bepaal je eigenlijk of
een maatregel werkt? Wat is een goede maat voor betrouwbaarheid? In
deze bijdrage maken we een boeiend uitstapje naar de wereld van haltes,
overstappen en OV-chipkaarten.

Lees het artikel uit NM magazine HIER
Lees het uitgebreide wetenschappelijke artikel HIER

Trambonus hoort in strategische planning

Kiezen we voor de bus of voor de tram? Bij de introductie van nieuwe ov-lijnen is de systeemkeuze altijd een belangrijk discussiepunt.

Lees het artikel in OV magazine HIER

Wat is de waarde van Openbaar Vervoer?

De waarde van openbaar vervoer wordt vaak te beperkt in beeld gebracht. Het draait vaak alleen om kosten van infrastructuur en exploitatie. Waarom eigenlijk? De waarde van ov is meer dan alleen de vervoerwaarde. 5xE is een betere manier om het ov op waarde te schatten voor Effectieve mobiliteit, een Efficiënte stad, Economie, milieu (Environment) en sociale cohesie (Equity).

Lees hier het artikel in OV-Magazine

Logo 5xE-02

Spoorcollege: stedelijke rail

Het Nederlandse spoorwegennet van 1839 – 2039 (zowel voor reizigers als goederen) met Maurits van Witsen, Max Philips en Niels van Oort

Niet alleen in de samenleving, maar ook in onze sector gaan de ontwikkelingen in een hoog tempo. Niet alleen door de komst van computergestuurde auto’s en ‘Internet of Things’ maar ook door de ontwikkeling van het, deels gedecentraliseerde spoorwegennet, de veranderende goederenstromen, de klimaatveranderingen en de steeds wijzigende relatie van de overheid met de vervoerbedrijven. De leden van Railforum kijken regelmatig vooruit. We verkennen verschillende scenario’s en stellen gezamenlijk toekomstbeelden op. Maar hoe goed zijn we op de hoogte van de historische achtergronden?

Maurice Adams zei ooit: “Wie de ogen sluit voor het verleden, is blind voor de toekomst”.
Dus vandaar dat Railforum in samenwerking met de NVBS, conform de Spoorcolleges tijdens de SpoorParade in 2014, vier bijeenkomsten organiseert waar diverse experts lezingen geven. Accent ligt op de geschiedkundige context van, en een doorkijk naar nieuwe ontwikkelingen. Aansluitend is er ruimte voor vragen en is er een netwerkborrel. Bij het uitnodigen letten we extra op de vier verschillende generaties in onze sector, zodat specifieke kennis en de historische context daarvan wordt overgedragen aan de bouwers van onze toekomst.

Zie de slides HIER

en een kort verslag van OV-PRO HIER

Innovatieve toepassingen van OV chipkaartdata

Er wordt veel gesproken over nieuwe databronnen die helpen bij de uitdagingen in de OV wereld. De OV chipkaart is één van de bronnen, waarmee we het OV beter en efficiënter kunnen maken. Maar tot nog toe gebruikten we deze data vooral ter vervanging van eerdere handmatig verkregen data. In dit paper gaan we een stap verder. Aan de hand van drie innovatieve cases laten we zien dat er veel meer met deze data te doen is.

Met OV chipkaart data stelden wij een OV-model op voor Den Haag voor korte termijn prognoses. Dit is de basis geweest voor de drie cases:

De vraag voor eerste case was: zijn elasticiteits¬parameters af te leiden uit revealed preference data voor verschillende praktijksituaties? Wij merken dat dit goed mogelijk is. En dat het gedrag van reizigers verschilt per context: reizigers reageren heftiger op ‘tijdelijk ongemak’ dan in een vergelijkbare structurele situatie. De elasticiteitsparameter kan tot 25% hoger liggen.

Ook kijken wij naar een belangrijk, maar vaak in modellen genegeerd aspect van reisbeleving: comfort. Voor de regio Den Haag nemen wij expliciet comfort op in de (model) kostenfunctie door rekening te houden met de capaciteit van voertuigen. De bestaande vraag leiden wij direct af uit OV chipkaartgegevens. Onze studieresultaten tonen aan dat het niet beschouwen van capaciteit en comfort kan leiden tot een onderschatting van de vervoerwaarde-effecten tot 30%. We laten ook zien dat deze aanpak kan worden toegepast in de praktijk: de rekentijd is kort en het leidt tot een betere vraagraming van openbaar vervoer.

Tot slot kijken we naar de bruikbaarheid en inzet van andere databronnen. Als pilot hebben we een vergelijkende analyse tussen OV chipkaart- en GSM data uitgevoerd voor de regio Emmen. We tonen aan dat de GSM data aanvullend is: deze is namelijk ook bruikbaar voor analyse van de niet-ov-reizigers. Tot slot laten we zien dat het combineren van de twee databronnen inzicht verschaft in de potentie voor OV op specifieke HB relaties. Zo benoemen wij een aantal relaties in de regio Emmen waar op basis van de data het OV gebruik (vooralsnog) achter blijft en dus potentie heeft.

Alle drie de cases laten innovatie zien op onderzoek en toepassing van OV chipkaartdata. Wij gaan door met deze innovaties voor een beter en efficiënter OV!

Lees hier onze paper: CVS2015: Innovatie met chipkaartdata

De presentatie vind je HIER

Hoe maak en beoordeel je een dienstregeling? (ROCOV training)

ROCOV-trainingen bieden u praktische handvatten om uw taak als reizigersvertegenwoordiger uit te oefenen. Tijdens de training “Dienstregelingen” worden tweetal jaarlijks in de ROCOV’s terugkerende onderwerpen behandeld: de dienstregeling en de tarieven. We verkennen waaraan een goede dienstregeling voor de reiziger moet voldoen en wat de valkuilen zijn. Aan de hand van een concrete oefening leert u welke afwegingen een planner moet maken. Niels van Oort schetst u de ontwikkelingen die op dit vlak spelen. Hij geeft een beschrijving van de verschillende methodieken om een dienstregeling op te stellen en de consequenties daarvan voor de reizigers.

Meer info: Website ROVER

Urban Mobility Lab: benut databerg

CROW-KpVV hield op 28 mei in Utrecht de eerste landelijke kennisdag over het benutten van data in het openbaar vervoer. Het delen van data levert veel op, maar is nog geen gemeengoed. Tijdens de bijeenkomst stond onder andere het Urban Mobility Lab in de schijnwerpers: een proeftuin vol data over vervoerpatronen in Amsterdam.

Lees het hele artikel: Urban Mobility Lab in OV Magazine

Urban Mobility Lab

Op 28 mei 2015 organiseerde CROW-KpVV in de Galgenwaard in Utrecht de eerste landelijke bijeenkomst over het benutten van data in het openbaar vervoer. Het doel van deze onafhankelijke kennisdag was om te laten zien welke toepassingsmogelijkheden er zijn voor data die beschikbaar is. Zo kan slim gebruik hiervan overheden helpen bij het nemen van beleidsbeslissingen en beheren van een concessie. Daarnaast kunnen verschillende regio’s van elkaar leren door data te koppelen en te vergelijken. Er liggen kortom volop kansen op het gebied van datagebruik in het ov.

Niels van Oort, assistant professor ov aan de TU Delft, vertelde tijdens het plenaire deel over hoe Amsterdam als levend mobiliteitslaboratorium fungeert. Hoe kunnen we alle voetgangers-, fiets-, auto- en OV-data verzamelen, combineren en visualiseren om te komen tot een beter begrip en kennis van het totale mobiliteitssysteem? In een verdiepende deelsessie stonden de mogelijkheden voor het ov centraal: wat kunnen we leren over het ov door gebruik te maken van databronnen als GSM, GOVI en OV-chipkaart?

Bekijk hier de presentatie: Urban Mobility Lab

© 2011 TU Delft