Niels van Oort
Light rail implementation: success and failure aspects of Dutch light rail projects
Light rail has been successfully implemented in many urban regions worldwide. Although light rail has been a proven transport concept in many cities, there is much debate on the (societal) cost-benefit ratio of these systems. In addition to the success stories, several light rail projects were not that successful or even failed. In recent years, many light rail plans have been cancelled in The Netherlands, some after many years of planning and some even after the start of the tendering process or during trial operation. We want to know why this happened, so we will be able to support future design and decision making. This paper describes our research aiming at the answer to the question: what are the success and failure factors of light rail planning based on the Dutch experiences? This research has been performed as a survey, in which we investigated five projects, being light rail projects in the Netherlands (and one reference project in France) that either succeeded or failed in different project stages. The main conclusion is that several, multidisciplinary factors make a success or failure out of a light rail project. Projects do not fail just because a lack of funding, small political support or technical obstacles only. Rather than that, a combination of factors causes projects to fail. Subsequently, projects will only be successful if they are based on more than one success factor. Just a high potential ridership or political support is for instance not enough to guarantee a project to succeed.
Read the paper: TRB2015
Short term ridership prediction in public transport by processing smart card data
Public transport operators are exposed to massive data collection from their smart card systems. In the Netherlands, every passenger needs to check in and to check out, resulting in detailed information on the demand pattern. In buses and trams, checking in and checking out takes place in the vehicle, providing good information on route choice. This paper explores options for using this smart card data for analysis and performing what-if analyses by using transport planning software. This new generation of transport demand models, based on big data, is an addition to the existing range of transport demand models and approaches. The intention is to provide public transport operators with a simple (easy to build) model to perform these what-if analyses. The data is converted to passengers per line and an OD-matrix between stops. This matrix is assigned to the network to reproduce the measured passenger flows. After this step, what-if analysis becomes possible. With fixed demand, line changes can be investigated. With the introduction of an elastic demand model, changes in level of service realistically affect passenger numbers. This method was applied on a case study in The Hague. We imported the smart card data into a transport model and connected the data with the network. The tool turned out to be very valuable for the operator to gain insights into the effect of small changes.
Read the paper: TRB 2015
Robuust openbaar vervoer vanuit een reizigersperspectief
De klachten van reizigers tijdens de sneeuwproblematiek in het openbaar vervoer de afgelopen jaren, Kamervragen over het hoge uitvalpercentage van de Intercity Direct en discussies over spooronderhoud in de Schipholtunnel maken één ding duidelijk: het belang van robuust openbaar vervoer. Desondanks richten discussies over robuustheid zich alleen op de kosten van robuustheidsmaatregelen. Tot op heden wordt nauwelijks gefocust op de waarde van robuustheid: wat zijn de robuustheidsbaten van de maatregelen en wat is die robuustheid waard?
In deze paper hebben we een methodologie ontwikkeld die ons in staat stelt om de maatschappelijke waarde van robuust openbaar vervoer te bepalen, in aanvulling op reeds vastgestelde tijd- en betrouwbaarheidswaarderingen. Robuustheidsbaten van maatregelen kunnen hiermee worden gemonetariseerd, en afgewogen worden tegen de benodigde kosten. Hiermee ondersteunt deze methodologie besluitvorming aangaande de implementatie van robuustheidsmaatregelen.
In deze paper wordt robuustheid vanuit een reizigersperspectief benaderd. Op dit moment wordt robuustheid door wetenschap en praktijk vooral vanuit een mono-level perspectief benaderd: voor elk netwerkniveau en elke modaliteit apart. In dit onderzoek richten we ons echter op robuustheid van het totale multi-level openbaar vervoer netwerk, waarbij alle openbaar vervoer netwerkniveaus en alle modaliteiten (trein, metro, lightrail, tram, bus) van verschillende vervoerders integraal worden geanalyseerd. Hierdoor kan inzichtelijk worden gemaakt in welke mate netwerkniveaus een verstoring op een ander netwerkniveau kunnen opvangen, en wordt op realistische wijze inzicht verkregen in de effecten van verstoringen op reizigers.
In dit onderzoek is eerst een nieuwe methodologie ontwikkeld om de meest kwetsbare plaatsen in het multi-level netwerk te identificeren. Door zowel verstoringskansen, verstoringsduur als verstoringsimpact expliciet in beschouwing te nemen, kan vervolgens de mate van onrobuustheid van deze kwetsbare netwerkdelen worden gekwantificeerd. De ontwikkelde methodologie is succesvol toegepast op de Randstad Zuidvleugel als casestudy. De resultaten illustreren dat vanuit een reizigersperspectief ruimte is om robuustheid van openbaar vervoer netwerken te verbeteren. Met name tijdelijke lijnvoeringmaatregelen (zoals een tijdelijke frequentieverhoging op een route parallel aan een kwetsbaar netwerkdeel) en kleine infrastructurele maatregelen hebben maatschappelijk gezien potentie om robuustheid verder te verbeteren. In de casestudy wegen robuustheidsbaten van grotere infrastructurele maatregelen (zoals de aanleg van extra wissels) tijdens verstoringen niet op tegen de kosten voor reizigers en vervoerders tijdens de onverstoorde situatie.
Uit de casestudy blijkt dat het niet eenvoudig is om vooraf de waarde van verschillende maatregelen te beoordelen. Onze aanpak helpt dit proces te verbeteren en biedt robuustheid daarbij een plek in de besluitvorming.
Lees meer:
Paper Menno Yap CVS2014 of
Presentatie
Betere OV prognoses met anonieme OV-Chipkaartdata
Door de introductie van de OV-Chipkaart komen er grote hoeveelheden data over reizigersstromen in het OV beschikbaar. Naast data over de voertuigprestaties (via GOVI bijv.) hebben de inzichten uit deze reizigersdata een enorm potentieel voor de optimalisatie van het OV-product. Dit artikel verkent de mogelijkheden om, de privacy van reizigers respecterend, deze data in te zetten voor de voorspelling van nieuwe reispatronen bij aanpassingen in het netwerk en/of de dienstregeling. Het doel is om een relatief eenvoudige “What-if”-methodiek te ontwerpen, die snel en voldoende nauwkeurig reizigersprognoses kan maken. Hiermee ontstaat een nieuwe generatie verkeersmodellen.
De aanpak combineert de eenvoud en snelheid van de “sigarenkist” en de visualisatie- en rekenkracht van een verkeersmodel. We hebben de methodiek ingebed in bestaande OmniTRANS-verkeersmodelsoftware. De anonieme OV-chipkaartdata wordt toegedeeld aan het OV netwerk in het model, waardoor huidige stromen gevisualiseerd kunnen worden. Door gebruik te maken van elasticiteiten over de relatie tussen OV-kwaliteit en OV-gebruik (zowel uit de literatuur als op basis van gangbare vuistregels) kunnen eenvoudige prognoses gemaakt worden. Die dienen bijvoorbeeld om inzicht te krijgen in inkomstenderving door omleidingen of om effecten te schatten van budgettaire maatregelen.
We hebben de gepresenteerde methodiek succesvol toegepast op het tramnetwerk van HTM in Den Haag, waarmee sneller en nauwkeurige dan voorheen prognoses gemaakt kunnen worden. Voor het afwegen van scenario’s in de ontwikkeling van het railnetwerk en bij het afwegen van tijdelijke omleidingsscenario’s gebruikt HTM de aanpak inmiddels om reizigerseffecten te prognosticeren. Deze analyses helpen in het maken van betere keuzes en in het besluitvormingsproces met de OV-autoriteit Haaglanden.
Hoewel waardevol, zijn er ook een aantal beperkingen aan deze methode. De aanpak is unimodaal en door het gebruik van elasticiteiten slechts toepasbaar voor kleine veranderingen op relatief korte termijn. Nu met de OV-Chipkaartdata meer inzichten kunnen worden verkregen, raden wij aan de gehanteerde elasticiteiten te actualiseren. Gedrag van reizigers bij kleine veranderingen kan relatief eenvoudig bepaald worden nu deze data voorhanden is. De volgende stap in ons onderzoek is het koppelen van de reizigersdata aan de voertuigdata, waardoor gedetailleerdere analyses gemaakt kunnen worden van bijvoorbeeld reizigerspunctualiteit.
Lees meer:
Paper CVS2014 of Presentatie
Urban Mobility Lab in Amsterdam
Amsterdam Institute for Advanced Metropolitan Solutions (AMS), het nieuwe instituut voor toegepaste stedelijke technologie en ontwerp start met drie projecten. Deze projecten gaan nog dit jaar van start; Rain Sense, Urban Pulse en Urban Mobility Lab. Deze projecten voldoen aan belangrijke criteria van AMS-projecten: er zijn partners van het instituut én inwoners van de stad betrokken, de onderzoek is nuttig voor de inwoners van Amsterdam en de projecten zijn wereldwijd gezien innovatief.
Urban Mobility Lab (olv Serge Hoogendoorn, Hans van Lint en Niels van Oort) houdt zich bezig met het begrijpen en kunnen voorspellen van verkeersstromen. In een metropool als Amsterdam is dat complex, omdat verkeer en vervoer het resultaat zijn van miljoenen kleine en grote beslissingen. Neemt u de auto, de tram of gaat u lopen? Waar gaat u wonen en werken? Op welke manier worden bedrijven bevoorraad? Waar moet dat nieuwe station komen? Alles hangt met alles samen. AMS gaat hiervoor een uniek laboratorium bouwen waarmee we dat soort vragen integraal en in samenhang kunnen onderzoeken. Met dit Urban Mobility Lab kunnen gemeente, bedrijven en bewoners straks werken aan nieuwe, schonere en betrouwbaardere mobiliteit voor iedereen.
Kijk voor meer informatie over UML op: Slides UML
Renée Hoogendoorn, directeur van AMS, is trots op deze stappen. ‘De impact van deze projecten voor de stad is groot. Wat is er mooier dan te werken aan de kwaliteit van wonen, werken en verblijven in de stad, te werken aan de lééfkwaliteit en dus te zorgen voor minder schade, minder files, minder milieuvervuiling en om te helpen dat essentiële zaken – als energie, water en voedsel – voor iedereen beschikbaar zijn? Komende tijd zullen meer projecten starten en zal ook zichtbaar worden wat AMS qua Onderwijs en Data-Platform te bieden heeft. De feitelijke start van AMS is nu gemaakt. Dat we nu dus ook een eigen locatie hebben in Amsterdam is niet alleen noodzakelijk maar ook een groot genot. Op deze interessante plek in Amsterdam kunnen we komende jaren AMS flink uitbouwen.’
Over AMS
AMS is een internationaal instituut dat vanuit een multidisciplinaire aanpak onderzoek doet naar grootstedelijke vraagstukken en hiervoor oplossingen ontwikkelt en implementeert. Bewoners van de stad worden betrokken als testers, gebruikers en co-creators van producten en ideeën die de stad leefbaarder moeten maken. Amsterdam fungeert daarmee als het ‘living lab’ van AMS. AMS is een initiatief van de academische partners TU Delft, MIT en Wageningen UR, samen met de Gemeente Amsterdam. De basis van AMS is een open platform waarbij allerlei partijen kunnen aansluiten. Het instituut werkt nu al samen met partners als Accenture, Alliander, Cisco, IBM, KPN, Shell en Waternet, Amsterdam Smart City, ESA, TNO, Waag Society, het Havenbedrijf Amsterdam en de stad Boston.
EMTA Report: Light rail explained
The need for viable, cost effective and attractive public transport in high-density areas is immanent. Transport Authorities have a responsibility to foster innovations in urban transport and look at smart replies to match the growth of demand for quality mass transit. A good living climate, economic efficiency, social inclusion, sustainability and competitiveness depend on the capacities of a city to invest in high quality transport services. The authors of this paper explain what especially in urbanised areas should be main reasons to persuade cities to improve accessibility and liveability by engage and develop a light rail solution. It comes down to a very basic question: “why light rail?” or more in general “why chose for high quality public transport?”.
In a thorough evidence-based description Rob van der Bijl and Niels van Oort demonstrate how it has been overlooked that light right rail does not only provide benefits that are obvious to all, like speed and comfort,
but that in cost-benefit terms also reliability of service should be valued in money. Efficiency benefits
thereby are incomplete and therefore impeded chances on smart light rail realisation. If taken into
account the social context of projects and awareness of the influence of the difference in types of
legal context, governance and institutional legacy a transformation of urban networks by light rail
can be an asset to spatial urban revival. The Light Rail can be an impetus to the urban quality of
life and more importantly provide a sustainable way of accommodating mobility needs of city
denizens and visitors.
Read the full report: EMTA Report
Data driven optimisation of public transport
Presentation at EMTA meeting at TfL in London:
Feedforward mechanisms in public transport; How data improves service quality and increases efficiency.
Find the presentation HERE
Verkeersmodellen verrijken met onbetrouwbaarheid OV vanuit een reizigersperspectief
In verkeersmodellen rijdt al het OV op tijd. Huidige, state of the art, verkeersmodellen houden namelijk geen expliciete rekening met de betrouwbaarheid van de dienstuitvoering van OV, terwijl het door reizigers als één van de belangrijkste aspecten wordt gezien. Om dit aspect mee te kunnen nemen in een verkeersmodel, wordt in dit paper een driestappenplan gepresenteerd, gebruik makend van data over de gerealiseerde dienstuitvoering uit GOVI (Grenzeloze OV Informatie). Deze drie stappen bestaan uit het bepalen van de rijtijdspreiding van de voertuigen, het bepalen van het effect op wacht- en in-voertuigtijd en uiteindelijk het bepalen van het verwachte effect van onbetrouwbaarheid op de gemiddelde reistijd per reiziger. Deze benadering is succesvol getest op het verkeersmodel van de regio Utrecht: door het toevoegen van OV onbetrouwbaarheid per lijn of traject in het model, is de verklarende waarde van het model toegenomen: het resultaat voor kalibratie komt 18% dichter bij de telcijfers. Doordat OV onbetrouwbaarheid expliciet wordt meegenomen, is het mogelijk om verbeteringen in de betrouwbaarheid expliciet mee te nemen als modelvariant. Dit biedt mogelijkheden voor het evalueren van maatregelen die niet zo zeer de snelheid van het OV beïnvloeden, maar wel de betrouwbaarheid. De modelresultaten kunnen bijvoorbeeld input zijn voor een maatschappelijke kosten-baten analyse. Verbeterde betrouwbaarheid kan immers substantiële maatschappelijke baten tot gevolg hebben. Het driestappenplan is een eerste aanpak én toepassing van het meenemen van onbetrouwbaarheid van OV in verkeersmodellen. De volgende stap is het verfijnen van deze methodiek door bijv. onbetrouwbaarheid als zelfstandig aspect in de nutsfunctie mee te nemen.
Lees meer: Tijdschrift vervoerwetenschappen 3, 2014
OV-chipdata als tool voor efficiënt OV
De kosten in het OV staan onder druk, maar tegelijkertijd eist de reiziger hogere
kwaliteit. Dat vraagt om een hogere kostendekkingsgraad en een hogere bezettingsgraad.
Hoe kan big data hier een rol in spelen? “Het draait vooral om een
combinatie van voertuig- en reizigersdata; een analyse van het verleden en een
voorspell¡ng van de toekomst”, stelt OV-adv¡seur Niels van Oort. “Analyse kan
leiden tot verbetervoorstellen en uiteindelijk optimalisatie van de OV-dienst.”
Lees hier het volledige interview: Verkeer in Beeld
Wie volgt @verkeerskunde?
@Niels_van_oort is het twitteraccount van Niels van Oort, Adviseur ov bij Goudappel Coffeng en assistant professor OV, TU Delft. Wat vindt hij van Twitter?
Lees meer: Verkeerskunde