Improving public transport decision making, planning and operations by using Big Data

Cases from Sweden and the Netherlands

dr. ir. N. van Oort

Assistant professor public transport

dr. Oded Cats

TUDelft Assistant professor public transport

Public Transport Consultant Goudappel Coffeng Goudappel Coffeng

IEEE ITSC Las Palmas 2015

Challenges in PT industry

Main challenges:

- Increasing cost efficiency
- Increasing customer experience
- Motivating new strategic investments

Data and models enable achieving objectives

Approach

- New methodologies
- Proven in practice

Operations and feedback

Applications

- Real-time information generation and dissemination
 - Real-time control strategies (e.g. holding, stop skipping)
 - Fleet management (e.g. short turning, deadheading)
 - Priority measures (e.g. traffic signal priority, dynamic lanes).
- Involve generating predictions on future system conditions
- Require instantaneous access to large amounts of online data and tools to assess and implement alternative measures in real-time
- Can be ultimately integrated into a decision support system

Applied examples

Monitoring and predicting passenger numbers: Whatif Improving service reliability

Quantifying benefits of enhanced service reliability in public transport

Van Oort, N. (2012)., Proceedings of the 12th International Conference on Advanced Systems for Public Transport (CASPT12), Santiago, Chile.

Optimizing planning and real time control

Van Oort, N. and R. van Nes (2009), Control of public transport operations to improve reliability: theory and practice, Transportation research record, No. 2112, pp. 70-76.

Cats, O. (2014) Regularity-Driven Bus Operations: Principles, Implementation and Business Models, Transport Policy, vol. 36, pp. 223-230

Optimizing synchronization multimodal transfers

Lee, A. N. van Oort, R. van Nes (2014), Service reliability in a network context: impacts of synchronizing schedules in long headway services, Transportation Research Record, No. 2417, pp. 18-26

Improved scheduling

Van <u>*Oort, N.*</u> *et al. (2012). The impact of scheduling on service reliability: trip time determination and holding points in long-headway services. Public Transport, 4(1), 39-56.*

Cats, O. et al. (2012) Holding Control Strategies: A Simulation-Based Evaluation and Guidelines for Implementation. Transportation Research Record, 2274, pp.100-108.

Case 1: The Hague, The Netherlands

Smartcard data (1/2)

The Netherlands

- OV Chipkaart
- Nationwide (since 2012)
- All modes: train, metro, tram, bus
- Tap in and tap out
- Bus and tram: devices are in the vehicle

Issues

- Privacy
- Data accessibility via operators

Data

- 19 million smartcards; 42 million transactions every week
- Several applications of smartcard data:

Smartcard data (2/2)

Our research focus:

Connecting to transport model

- Evaluating history Predicting the future
- Elasticity approach (quick and low cost)

Transport Planning Software

Connecting data to transport model (1/4)

1) Importing PT networks (GTFS) (Open data)

Connecting data to transport model (2/4)

- 2) Importing smartcard data (Closed data)

Chip ID	Check in	Check out	Check in	Check out	Line	(vehicle	(ticket
	stop	stop	time	time	number	number)	type)
1	35	488	10:27	10:52	9		Regular
							single
2	23	86	8:01	8:09	1		Student
2	86	90	8:17	8:55	3		Student
3	73	94	7:20	7:53	4		Annual
							ticket
3	94	73	16:55	17:27	4		Annual
							ticket

Connecting data to transport model (3/4)

3) Processing and matching

Processing smart card data

- missing check outs
- short trips

Connecting data to transport model (4/4)

4) Route choice and visualization options of transport model

What if?

Challenge the future 16

PT modelling

Traditional (4-step) model

Multimodal (~PT) Network Complex Long calculation time Visualisation Much data Detailed results

Short term predictions

Elasticity method based on smartcard data

What if: elasticity approach (1/2)

$C_{ij} = \alpha_1 T_{ij} +$	$\alpha_2 W T_{ij} + \alpha_3 N T_{ij} + \alpha_4 F_{ij}$	(1)
With:		
C _{ij}	Generalized costs on OD pair <i>i</i> , <i>j</i>	
$\alpha_1, \alpha_2, \alpha_3, \alpha_4$	Weight coefficients in generali	zed costs calculation
T_{ij}	In-vehicle travel time on OD pair <i>i</i> , <i>j</i>	
WT_{ij}	Waiting time on OD pair <i>i</i> , <i>j</i>	
NT_{ij}	Number of transfers on OD pair <i>i</i> , <i>j</i>	
F _{ij}	Fare to be paid by the traveler on OD p	air <i>i,j</i>

What if: elasticity approach (2/2)

- Elasticities
- Literature (e.g. Balcombe)
- "Proven " rules of thumb

- NOTE:
- Simple changes
- Short term
- Only LOS changes
- Accuracy

Whatif results: Flows rerouting

Whatif: increased speed

Case 2: Stockholm, Sweden

Stockholm trunk bus case study

- AVL for entire bus fleet used for:
 - Radio communication
 - Real-time monitoring
 - Fleet management strategies
 - Generation of real-time passenger information
- Ongoing work to make APC (10-15% buses) and AFC (90% users, check-in only) available in real-time
- 5-7 min headway

TUDelft

- Partially dedicated ROW
- 58% of all bus pass-km in Stockholm inner-city

Primary problem: service unreliability Line 1, 16:00-17:00

Study objective and approach

- Developing and evaluating operational and control strategies to mitigate the bus bunching phenomenon
- 1. Analyzing reliability at the stop, line and network level
- 2. Investigate the underlying determinants of service reliability
- Design and test first in a simulation envorionment then in the field -

From Research to a Field Test

Modeling - Transit operations simulation model, BusMezzo

Validation - Tel-Aviv and Stockholm case studies

Evaluation and Optimization - Realtime holding strategies for Stockholm case study

Series of experiments – Field trials with lines 1,3 and 4 in Stockholm

Implementation – Full-scale operations and business model

Challenge the future 26

More regular services - Line 4, 7:00-19:00

Challenge the future 27

Main outcomes from field experiments

- Excessive waiting time
- In-vehicle time
- Total travel time (1172->1056 sec)

- Annual savings of 4,5 million Euro for weekdays 7am-7pm (underestimation of congestion effects)

Summary

- Major challenges in public transport
- Data supports optimization
- Evaluating and controlling -> predicting and optimizing
- Connecting data to transport models enables short term predictions
- Combining strenths of two approaches (complex <-> simple)
- Developing and evaluating operational and control strategies to mitigate the bus bunching phenomenon

Next steps

- Updating elasticities (using smartcard data)
- Additional factors in cost function (reliability, crowding, etc)
- Data fusion

Questions / Contact

N.vanOort@TUDelft.nl

O.Cats@TUDelft.nl

Publications:

http://nielsvanoort.weblog.tudelft.nl/

https://odedcats.weblog.tudelft.nl/

