Niels van Oort

Public transport researcher

EMTA Report: Light rail explained

The need for viable, cost effective and attractive public transport in high-density areas is immanent. Transport Authorities have a responsibility to foster innovations in urban transport and look at smart replies to match the growth of demand for quality mass transit. A good living climate, economic efficiency, social inclusion, sustainability and competitiveness depend on the capacities of a city to invest in high quality transport services. The authors of this paper explain what especially in urbanised areas should be main reasons to persuade cities to improve accessibility and liveability by engage and develop a light rail solution. It comes down to a very basic question: “why light rail?” or more in general “why chose for high quality public transport?”.

In a thorough evidence-based description Rob van der Bijl and Niels van Oort demonstrate how it has been overlooked that light right rail does not only provide benefits that are obvious to all, like speed and comfort,
but that in cost-benefit terms also reliability of service should be valued in money. Efficiency benefits
thereby are incomplete and therefore impeded chances on smart light rail realisation. If taken into
account the social context of projects and awareness of the influence of the difference in types of
legal context, governance and institutional legacy a transformation of urban networks by light rail
can be an asset to spatial urban revival. The Light Rail can be an impetus to the urban quality of
life and more importantly provide a sustainable way of accommodating mobility needs of city
denizens and visitors.

Read the full report: EMTA Report

Data driven optimisation of public transport

Presentation at EMTA meeting at TfL in London:
Feedforward mechanisms in public transport; How data improves service quality and increases efficiency.

Find the presentation HERE

Verkeersmodellen verrijken met onbetrouwbaarheid OV vanuit een reizigersperspectief

In verkeersmodellen rijdt al het OV op tijd. Huidige, state of the art, verkeersmodellen houden namelijk geen expliciete rekening met de betrouwbaarheid van de dienstuitvoering van OV, terwijl het door reizigers als één van de belangrijkste aspecten wordt gezien. Om dit aspect mee te kunnen nemen in een verkeersmodel, wordt in dit paper een driestappenplan gepresenteerd, gebruik makend van data over de gerealiseerde dienstuitvoering uit GOVI (Grenzeloze OV Informatie). Deze drie stappen bestaan uit het bepalen van de rijtijdspreiding van de voertuigen, het bepalen van het effect op wacht- en in-voertuigtijd en uiteindelijk het bepalen van het verwachte effect van onbetrouwbaarheid op de gemiddelde reistijd per reiziger. Deze benadering is succesvol getest op het verkeersmodel van de regio Utrecht: door het toevoegen van OV onbetrouwbaarheid per lijn of traject in het model, is de verklarende waarde van het model toegenomen: het resultaat voor kalibratie komt 18% dichter bij de telcijfers. Doordat OV onbetrouwbaarheid expliciet wordt meegenomen, is het mogelijk om verbeteringen in de betrouwbaarheid expliciet mee te nemen als modelvariant. Dit biedt mogelijkheden voor het evalueren van maatregelen die niet zo zeer de snelheid van het OV beïnvloeden, maar wel de betrouwbaarheid. De modelresultaten kunnen bijvoorbeeld input zijn voor een maatschappelijke kosten-baten analyse. Verbeterde betrouwbaarheid kan immers substantiële maatschappelijke baten tot gevolg hebben. Het driestappenplan is een eerste aanpak én toepassing van het meenemen van onbetrouwbaarheid van OV in verkeersmodellen. De volgende stap is het verfijnen van deze methodiek door bijv. onbetrouwbaarheid als zelfstandig aspect in de nutsfunctie mee te nemen.

Lees meer: Tijdschrift vervoerwetenschappen 3, 2014

OV-chipdata als tool voor efficiënt OV

De kosten in het OV staan onder druk, maar tegelijkertijd eist de reiziger hogere
kwaliteit. Dat vraagt om een hogere kostendekkingsgraad en een hogere bezettingsgraad.
Hoe kan big data hier een rol in spelen? “Het draait vooral om een
combinatie van voertuig- en reizigersdata; een analyse van het verleden en een
voorspell¡ng van de toekomst”, stelt OV-adv¡seur Niels van Oort. “Analyse kan
leiden tot verbetervoorstellen en uiteindelijk optimalisatie van de OV-dienst.”

Lees hier het volledige interview: Verkeer in Beeld

Wie volgt @verkeerskunde?

@Niels_van_oort is het twitteraccount van Niels van Oort, Adviseur ov bij Goudappel Coffeng en assistant professor OV, TU Delft. Wat vindt hij van Twitter?

Lees meer: Verkeerskunde

OV data wereldwijd omarmd

Niels van Oort was begin juli bij de eerste ‘Workshop on Smart Card Data Analysis’ in
Japan. “Het feit dat wij één nationaal systeem hebben met de OV-chipkaart maakte
indruk op mijn collega’s. Toch kijk ik ondanks onze landelijke dekking met enige
jaloezie naar hoe andere landen data omarmen voor beter ov.”

Lees het artikel: OV-Magazine aug 2014

International Workshop on Utilizing Transit Smart Card Data for Service Planning

Collecting fares through “smart cards” is becoming standard in most advanced public transport networks of major cities around the world. Using such cards has advantages for users as well as operators. Whereas for travellers smartcards are mainly increasing convenience, operators value in particular the reduced money handling fees. Smartcards further make it easier to integrate the fare systems of several operators within a city and to split the revenues. The electronic tickets also make it easier to create complex fare systems (time and space differentiated prices) and to give incentives to frequent or irregular travellers.
Less utilised though appear to be the behavioural data collected through smartcard data. The records, even if anonymous, allow for a much better understanding of passengers’ travel behaviour as various literature has begun to demonstrate. This information can be used for better service planning.

First International Workshop on Utilizing Transit Smart Card Data for Service Planning; 2nd – 3rd July, 2014; Gifu, Japan

My contribution to the workshop: Short term public transport modelling using smart card data

Improved public transport by data driven research

New promising Big Data sources are becoming available in the public transport industry. This data provides insights into both passenger flows and vehicle performance and is of great help to optimize public transport services. Traffic models are able to quickly process this data and to present it on a geographical layer. It enables to evaluate ridership and to compare it with the use of other modes as car and bike traffic. Finally, what-if predictions are available to gain insights into the expected level of cost coverage, service and ridership. These steps are of great support to optimize the public transport network and timetable design as well as its operations. This presentation reveals such opportunities for public transport systems.

Read more:Presentation seminar “Analytics and Scheduling in Public Transport”

How lightrail may enable enhanced service reliability

The introduction of lightrail in The Hague enabled a leap in service quality. The key challenge in other projects is how to incorporate these expected effects into decision making. In Utrecht we succeeded to calculate the expected service reliability impacts and incorporated them into the cost benefit analysis.

Read more: Presentation Danske Bane Konference

Quality improvement by implementing light rail: case RandstadRail

After the introduction of RandstadRail in The Hague, the level of service reliability increased substantially. An integrated package of planning and control instruments was designed and applied to achieve that objective.

Read: UITP Magazine p 1-2 and UITP Magazine p 3

© 2011 TU Delft