Niels van Oort
Wat gaat MaaS ons brengen?
MaaS congres 2018: Niels van Oort is assistant professor public transport aan de TU Delft en doet onderzoek naar de effecten van nieuwe vervoerssytemen. Hij gaat de mogelijke impact van MaaS op reizigers en maatschappij toelichten, met voorbeelden van verschillende pilots en onderzoeken.
Zie HIER zijn bijdrage aan het MaaS congres 2018
Assessing and improving operational strategies for the benefit of passengers in rail-bound urban transport systems
Unplanned disruptions in transit can have consequent impacts on passengers. The more inconvenienced passengers are, the more likely operators will be negatively impacted. Yet so far, operators and researchers have addressed the rescheduling problem during disruptions mainly with a supply-side focus – timetable, crews and vehicles – and not with a passenger perspective. Urban rail transit particularly lacks insights in terms of passenger- focused rescheduling. Being able to assess the inconvenience experienced by passengers during disruptions compared with what they normally experience, and being able to compare how different rescheduling strategies affect them are therefore two major challenges.
The framework developed in this study precisely aims at tackling 8 these challenges. A case study of the metro of Rotterdam is used to test the framework developed in this paper. Alternative strategies are developed focusing on the incident phase (from the beginning of the incident until its cause is resolved). The application of the framework reveals that a regularity-focused rescheduling strategy would be beneficial for high-frequency service users. Realistically, yearly savings could amount to around €900,000 in terms of societal passenger costs for the operator in the Rotterdam area alone. However, the omnipresence of the punctuality paradigm, through which most operators plan and analyze operations, makes the implementation of passenger-focused strategies a challenging task for traffic controllers. The results of the study are valuable for transit operators worldwide and the framework can provide insights to decision-makers on the performance of different strategies, bringing to light trade-offs between supply and passenger sides during disruptions.
Read more of this research by Anne Durand: Paper TRB and Poster TRB
The Potential of Demand Responsive Transport as a Complement to Public Transport
Demand Responsive Transport (DRT) offers a collective flexible travel alternative that can potentially complement Fixed Transit (FT). The combination of an on-demand and line-based services holds the promise of improved mobility and increased service coverage. However, insofar it remains unknown whether DRT services deliver such much anticipated improvements.
This study presents an assessment framework to evaluate the performance of DRT and related changes in accessibility and performs an empirical analysis for a recently introduced DRT service in the Netherlands. The framework includes a performance benchmark between DRT and FT based on the computation of generalized journey times of the DRT rides and the FT alternatives, and it can help identify whether DRT is used as complement or substitute of FT.
The framework covers the spatial and temporal dimensions, and the explicit consideration of rejected trips is an integral part of the evaluation. Results suggest large accessibility improvements for DRT users, especially for some underserved origin-destination pairs.
Read more of this work of Maria J. Alonso Gonzalez: TRB Paper and TRB Presentation
Nieuwe lessen over de potentie van Fiets en OV
Het combineren van fiets en openbaar vervoer is een duurzame oplossing voor de (mobiliteits)uitdagingen in zowel stedelijke gebieden als daarbuiten. Er is een revival van de fiets gaande en ook hoogwaardig openbaar vervoer rukt op. De keten van fiets mét openbaar vervoer combineert de voordelen van beide systemen: De fiets zorgt voor fijnmazige ontsluitingen van herkomst en bestemmingen, is milieuvriendelijk en stimuleert een gezonde leefstijl. Voor wat betreft OV neemt de kwaliteit de laatste jaren sterk toe door de introductie van hoogwaardig OV (HOV): snelle, frequente en betrouwbare bus- tram- en metrolijnen met een hoog comfortniveau. Voorbeelden zijn R-Net, Randstadrail en Q-Link. De halteafstanden van deze systemen zijn relatief hoog, waardoor de fiets een belangrijke rol speelt in de gebiedsontsluiting.
Om het succes van de fiets en OV verder uit te bouwen is kennis nodig over hoe de mobilist zich nu en in de toekomst beweegt: Wat zijn de succesfactoren, welke voorwaarden spelen een rol en waarom worden bepaalde keuzes gemaakt, bijvoorbeeld. Dit paper laat de resultaten zien van vier TU Delft onderzoeken op dit gebied. Belangrijkste, nieuwe inzichten zijn bijvoorbeeld dat het invloedsgebied van HOV haltes tot 4x groter is ten opzichte van “gewoon’’ OV. Verder blijkt dat treinreizigers bereid zijn ca. 6 min. extra te fietsen naar een station waar ze een directe trein kunnen nemen naar hun bestemming (in plaats van met een overstap). Tot slot blijkt dat de huidige groep fiets-OV’ers in te delen is in 7 groepen, waarvan de middle-aged male professionals de grootste zijn en de gepensioneerden de kleinste. De resultaten zijn de basis voor verder onderzoek en toepassing om te komen tot een optimaal Fiets-OV netwerk.
Lees het hele CVS paper HIER
De presentatie is HIER beschikbaar
Opportunities for the Combined Bicycle and Transit Mode
Around the world cities face negative effects generated by increasing mobility needs. To tackle these issues, mobility should be environmental and spatial friendly. Combining bicycle and public transport into a ‘bicycle + transit mode’ will create a synergy with the best of both worlds: superb door-to-door accessibility offered by the bicycle and a large spatial reach from transit modes. These complemented modes combined easily challenge private carsin terms of speed as well accessibility.
Research regarding the users and trip types of the bicycle and transit mode is largely missing. This is unfortunate, since understanding both user and trip characteristics is of the utmost importance to improve the share of the bicycle and transit mode. Policy-makers can make concrete decisions on infrastructure and service investments only when the gap between the aforementioned societal need and scientific knowledge is filled.
The main analysis in the study is based on data from the Netherlands. The Netherlands is one of the countries with a head start regarding the use of the bicycle + transit mode. A one-day trip diary survey, representative of the population of the Netherlands, with more than 250,000 respondents who made nearly 700,000 trips over the course of 6 years (2010-2015), is used to derive important trip and user characteristics of the bicycle + transit mode. Finally, latent class cluster analysis is applied to find prototypical users of this mode on the basis of their socio-demographic attributes.
It is, for example, found that the most important purposes of the bicycle and transit mode are work or education, typically involving relatively long distances. Bicycle and transit-potential for other transit network levels, such as metros and bus rapid transit can be found. Moreover, seven unique user groups – from middle-aged professionals to school children – are identified, and their different travel behaviour is discussed.
The wider benefits of high quality of public transport for cities
The full value of public transport is often underestimated. The 5E framework, consisting of effective mobility, efficient city, economy, environment and equity supports assessing and quantifying this value. This paper presents the framework and a wide selection of sources illustrating the wider benefits of high quality of public transport for cities.
Find our ETC conference paper HERE

Vacancy: PhD: Public Transport Data Analysis & Modelling
We are looking for a new PhD candidate in our PT research team. Click on the vacancy below or check HERE
Performance assessment of fixed and flexible public transport in a multi agent simulation framework
The emergence of innovative mobility solutions that offer flexible transport services, is changing the way urban public transport systems will be designed. Such mobility solutions offer on demand transport services and hence can solve the problems inherent with traditional line based and schedule based public transport systems. It is essential to understand the dynamics of this new demand-supply market with co-existing and competing fixed and flexible public transport. However, the performance of the system comprising of users and transit services and the factors influencing them, have received limited attention in literature. In this paper a model is developed to analyse the system performance when the modes of fixed public transport and flexible public transport operate in competition. The model is implemented in the multi-agent simulation framework MATSim with dynamic assignment in which the users optimize their travel plan through iterative learning from the service experienced and altering their travel plan. The scenarios in which the flexible public transport offer private and shared services are considered. The system performance is analysed for varying fleet size of flexible public transport and ratio of cost of flexible to fixed public transport.
Find the paper HERE
Data-driven transfer inference for public transport journeys during disruptions
Disruptions in public transport have major impact on passengers and disproportional effects on passenger satisfaction. The availability of smart card data gives opportunities to better quantify disruption impacts on passengers’ experienced journey travel time and comfort. For this, accurate journey inference from raw transaction data is required. Several rule-based algorithms exist to infer whether a passenger alighting and subsequent boarding is categorized as transfer or final destination where an activity is performed. Although this logic can infer transfers during undisrupted public transport operations, these algorithms have limitations during disruptions: disruptions and subsequent operational rescheduling measures can force passengers to travel via routes which would be non-optimal or illogical during undisrupted operations. Therefore, applying existing algorithms can lead to biased journey inference and biased disruption impact quantification. We develop and apply a new transfer inference algorithm which infers journeys from raw smart card transactions in an accurate way during both disrupted and undisrupted operations. In this algorithm we incorporate the effects of denied boarding, transferring to a vehicle of the same line (due to operator rescheduling measures as short-turning), and the use of public transport services of another operator on another network level as intermediate journey stage during disruptions. This results in an algorithm with an improved transfer inference performance compared to existing algorithms.
Find the paper HERE
Inzicht in kosten van vertragingen
Menno Yap, PhD student in het TRANS-FORM project, vertelt over zijn onderzoek in het AD: