Impact analysis of a new metro line in Amsterdam using automated data sources

Transit Data 2019

Malvika Dixit Ties Brands Oded Cats Niels van Oort Serge Hoogendoorn

/ervoerregio Amsterdam

Background

- The north-south metro line (NZL) opened on 22nd July 2018 in Amsterdam
- Changes to the whole network

Objective

- To study the impact of the network change on
 - ridership,
 - travel times,
 - reliability
- from a passenger perspective considering journeys including transfers within and across modes
- distributional analysis

Data sources

- Smartcard data
 - Tap-in and tap-out location and times
- Automatic Vehicle Location (AVL) data
 - Vehicle number, stop location and time stamps

Amsterdam PT Network

- ~850,000 inhabitants
- 5 metro lines
- 15 tram lines
- 44 bus lines
- >700,000 smartcard transactions per day

Data pre-processing

Travel time using smartcard data

١	Waiting time	In-vehicle time			ting ne	In-vehicle time	
I I	l l	Mode 1	I I	I I	I	Mode 2	I
t_0	t_1		t_2	t ₃	t_4		t ₅

Travel time using smartcard data

- Where first tap-in at station (eg. Amsterdam Metro)
 - Total travel time (t_5-t_0)
- Where first tap-in inside vehicle (eg. Amsterdam buses & trams)
 - Total travel time minus waiting time at origin (t_5-t_1)

	Waiting time	In-vehicle time		Fransfer time	Waiting time	In-vehicle time	
I I	I	Mode 1	I I		l	Mode 2	I I
t_0	t_1		t_2	t	3 t	4	t ₅

Waiting time at origin

- For journeys where first tap-in is inside the vehicle
 - Time passenger arrived at stop is not known
 - Headway of services known (from AVL data)
 - For short headway services passengers assumed to arrive randomly
 - Continuous random variables generated and sampled over uniform distribution [0, observed headway] to estimate waiting time for each journey

Ref : Dixit et al (2019)

618 Transit Stops

Transit Stop Clustering

- To make before and after situation comparable
- Increased sample size → only OD pairs with minimum 40 journeys preserved due to privacy regulations

Transit Stop Clustering

- Hierarchical clustering
- Maximum (Euclidean) distance threshold of 700m between transit stops

Transit Stop Clustering

Journey Statistics

Statistic	Before NZL	After NZL	Change
Total Journeys	19,577,474 (5 weeks)	24,569,654 (6 weeks)	
Average journeys per weekday	621,099	645,667	+4.0%
Total stop cluster pairs per weekday	31,650	31,523	-0.4%

Impact on Mode Shares

*Based on average journeys for a weekday (24 hours)

Travel time savings & loses

*Based on stop cluster pairs with minimum 40 journeys for weekdays (7am to 7pm)

Travel time savings & loses – by origin

Reliability measurement

Reliability buffer time (RBT) (Chan, 2007; Uniman et al, 2010)
Difference between the 95th and 50th percentile travel time experienced by travelers between a stop-stop pair using a specific route

$$RBT_{o,d,r} = tt_{95}^{o,d,r} - tt_{50}^{o,d,r}$$

Interpreted as the additional time passengers have to budget for their travel to ensure on-time arrival one out of twenty times

Impact on reliability

*Based on OD-route pairs with minimum 20 journeys and stop cluster pairs with minimum 40 journeys for weekdays (7am to 7pm)

Impact on number of transfers made

*Based on stop cluster pairs with minimum 40 journeys for weekdays (7am to 7pm)

elft

Impact on number of transfers made

Conclusion

- Application of smart card and AVL data for evaluation of a major infrastructural change
 - Consistent measurement of travel times across modes and routes
- Transit stop clustering enabled before/after comparison at a disaggregate level
 - Overall travel savings, but large differences between OD-pairs
 - Better reliability on average
 - Trade-off between transfers and travel times
- Could be used to refine the demand predictive ex-ante tools

Future Work

- Impact on crowding & transfers
- Equity impact of the network change
- Comparison with more aggregate (zonal) analysis
- Route choice behaviour

Thank you!

Contact Details: Malvika Dixit <u>M.Dixit-1@tudelft.nl</u> http://smartptlab.tudelft.nl/

