Impacts of charging methods and mechanisms of zero-emission buses on costs and level of service

Max Wiercx
Niels van Oort
Raymond Huisman

Co-director Smart Public Transport Lab
Delft University of Technology

MT-ITS Conference Krakow
June 2019

@Niels_van_Oort
Automation

Elektrification

Information

Sharification
Elektrification / Zero-emission

- 98% ZE-buses in China
- 2025: All new buses in NL: zero-emission
- 2030+: All buses in NL zero-emission
- Most promising: Hydrogen and electricity
Progress in the Netherlands

- > 5,000 bussen in NL

2016
1% electric

2018
5% electric
Charging types

- Battery charging
 - 2.3.1 Battery swapping
 - In-vehicle battery
 - 2.3.2 Slow
 - Plug-in
 - Pantograph
 - Induction
 - 2.3.3 Fast (OC)
 - 2.3.3.1 Static
 - Plug-in
 - Pantograph
 - Induction
 - 2.3.3.2 Dynamic (IMC)
 - On-vehicle pantograph
 - Induction
Impacts of public transport

Framework of 5 E’s

- Effective mobility
- Efficient city
- Environment
- Economy
- Equity

Zero emission
Focus on environment
What about mobility?

Van Oort et al. 2017
Challenges electric buses

- High investment costs
- Limited radius
- Several charging choices: type, location(s), strategies
Research objective

• Impacts of charging choices on costs and Level of Service
• Supporting trade offs during planning and design

• Focus: bus station
3-step Approach
Goal: Assessment framework

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>1 Disruptions</td>
</tr>
<tr>
<td></td>
<td>2 Delayed departure times</td>
</tr>
<tr>
<td></td>
<td>3 Dispersion in departure times</td>
</tr>
<tr>
<td>LoS</td>
<td>4 Operational delayed vehicle costs</td>
</tr>
<tr>
<td></td>
<td>5 Operational energy/fuel consumption costs</td>
</tr>
<tr>
<td></td>
<td>6 Vehicle investment costs</td>
</tr>
<tr>
<td></td>
<td>7 Charging infrastructure investment costs</td>
</tr>
<tr>
<td>Costs</td>
<td></td>
</tr>
</tbody>
</table>
Modelling approach

1. Calculation charging characteristics, number of buses
 Charging choices, season, network, timetable, ...

2. Micro simulation bus station (SimBus)
 AVL data, design parameters, charging details, ...

3. Assessment framework
 Passenger countings, cost-parameters, ...
Case Schiphol (North)
The world largest opportunity & depot charge network

13 MW
Charging Infrastructure

23 pieces Heliox Opportunity charge
450kW
2-4 min

86 pieces Heliox Depot charge
30kW
At night

100 busses VDL Electric Citea SFLA busses
Schunk roofmounted pantograph

AMSTERDAM AREA

Amstelland-Meerlanden

Amsterdam Airport

Depot charge + Opportunity charge
Depot Amstelveen

Opportunity charge
Schiphol Parking P30

Opportunity charge
Schiphol Parking North

Zero emissions

Passenger heliox
www.heliox.nl
Results 1/2

a. Electric city vehicles

- Delayed departure: €12,000, €10,000, €8,000, €6,000, €4,000, €2,000, €6
- Dispersion in departure time
- Disruptions (%)
- Charging infra investment
- Delayed vehicle costs
- Vehicle investment
- Energy/fuel consumption costs

- OC Induction
- OC Pantograph
- Slow depot charging
- Base case
Results 2/2

b. Electric R-net vehicles

- Delayed departure
 - € 12,000
 - € 10,000
 - € 8,000
 - € 6,000
 - € 4,000
 - € 2,000
 - € 0
 - € -2,000
 - € -4,000
 - € -6,000

- Dispersion in departure time
- Disruptions (%)

- Charging infra investment
- Vehicle investment
- Energy/fuel consumption costs

- Delayed vehicle costs

- OC Induction
- OC Pantograph
- Slow depot charging
- Base case

Challenge the future
Adjusting the timetable: new balance

“Two coffee breaks!

That never happened before on a conventional bus”

‘Twéé pauzes! Dat is me in een dieselbus nog nooit overkomen’

Elektrische bussen
Sinds zondag rijdt op Schiphol de grootste elektrische busvloot van Europa. Het is een logistiek karwei: meerdere malen per dag moeten ze worden opgeladen.

Joost Pijpker © 2 april 2018
Decision support

Electric operations

Availability of IMC infrastructure

Yes

No

BRT and (long distance) regional lines

City and (short distance) regional lines

Line type

Costs

Trade-off: costs / LoS

LoS

Suitable locations for OC stations

Yes

No

Depot close to bus station

Trade-off: costs / LoS

LoS

OC at bus station

Frequently use of charging systems and/or short conventional dwell times

Yes

No

More and/or higher power, more expensive charging systems

Less and/or lower power, less expensive charging systems

Depot charging

Consider IMC
Conclusions

- The shift to zero emission bus transport is involved with higher costs and passenger disturbances.

- Benefits of electric operations, including vehicle propulsion cost savings up to 70 percent, are not able to compensate the high investments.

- Our model supports planning choices of charging locations and strategies - extending and updating

- (Slow) depot charging offers opportunities for operations on short distance lines.

- Timetable adjustments needed to maintain LoS: new balance
Questions / Contact

N.vanOort@TUDelft.nl

@Niels_van_Oort

Niels van Oort

Publications:
http://nielsvanoort.weblog.tudelft.nl/

www.smartPTlab.tudelft.nl