Calibrating Route Choice Sets for an Urban Public Transport Network using Smart Card Data

Presenter:

Sanmay Shelat

Authors:

S. Shelat, O. Cats, N. van Oort, J.W.C. van Lint Dept. of Transport and Planning, Delft University of Technology

Introduction

Problem + Literature

- Choice set identification is important for estimation and application of route choice models
- It is a non-trivial task due to its combinatorial nature and dependence on traveller preferences
- Choice set identification approaches in literature can be classified as:
 - 1. Direct identification
 - a) Asking travellers what they considered
 - b) Routes observed from population (smart card data)
 - 2. Choice set generation methodology (CSGM)
 - a) Deterministic/stochastic shortest path
 - b) Constrained enumeration

Introduction

Contributions

We propose a constrained enumeration route CSGM that:

Avoids subjective assumptions regarding traveller preferences ...

... by using (increasingly available) smart card data to calibrate parameters ...

... of an intuitive and accepted behaviour model.

Behavioural Model

Non-compensatory Decision Models

- Non-compensatory evaluation is typical for choice set formation from a large number of alternatives
- 1. Disjunctive/Conjunctive
 - Sets minimum thresholds for important attributes; either comply with at least one or require all thresholds to be met (e.g., detour thresholds)
- 2. Lexicographic
 - Attributes ranked by importance; alternatives selected on the basis of performance in top-ranking attribute (e.g., link-labelling approach)
- 3. Elimination-by-aspects (deterministic)
 - Combines attribute ranking and setting thresholds
 - Used in this study

Overview

Representation → Generated-feasible Routes

- Network represented as infrastructure (L-space) and service (P-space) graphs
- A breadth-first search algorithm is used to enumerate routes, constrained:
 - Depth-wise by a maximum of two transfers
 - Breadth-wise by disallowing loops and transfers between common lines
- The following attributes are assigned to the route alternatives for each hour:
 - Waiting time (frequency-based), in-vehicle time, number of transfers
- Infeasible routes (no service) and dominated alternatives are removed
- For the EBA calibration, observed routes not in generated-feasible route set are discarded

EBA: Calibration Route Set

- The elimination-by-aspects (EBA) method has the following parameters:
 - 1. Attribute ranks
 - Attribute thresholds
- For a given EBA parameter set:
 - The calibrated route set is obtained from the generated-feasible route set
 - By removing routes that perform worse than threshold on attributes, sequentially in order of descending attribute rank
- To obtain the optimal behavioural parameters, we need performance indicators

EBA: Indicators

$$coverage = \frac{\sum_{i,j} q_{ij}^{TP}}{\sum_{i,j} q_{ij}^{TP} + q_{ij}^{FN}}$$

$$efficiency = \frac{\sum_{i,j} |R_{ij}^{TN}| q_{ij}}{\sum_{i,j} (|R_{ij}^{FP}| + |R_{ij}^{TN}|) q_{ij}}$$

 $\min(abs(coverage_a - efficiency_a))$

EBA: Brute Force Optimization

- Generally, only a few (but important) aspects/attributes are available from smart card data
- Furthermore, it is reasonable to expect that:
 - Potential thresholds are close to smallest values
 - A very high precision (<0.001) in threshold values is not required (because the differences will be imperceptible to choice makers)
- Therefore, it is feasible to employ a brute force algorithm to obtain the optimal EBA parameters

Case Study: The Hague Tram+Bus Description

- 12 Tram + 8 Bus bidirectional lines serving 459 stations
- Smart card data from March 2015
- Weekdays, 0600h-1100h

Case Study: The Hague Tram+Bus

Performance for different attribute rankings (lower is better)

- Num-T: number of transfers,
- WT: waiting time,
- IVT: in-vehicle time

Rank	Attribute	Threshold	Sequential Coverage
1	Number of transfers	0	99.3%
2	Waiting time	1.1	82.0%
3	In-vehicle time	1.1	78.4%

Optimal attribute ranking and thresholds

Case Study: The Hague Tram+Bus

Discussion

- Possible explanation for the rather restrictive threshold values:
- Some observations:
- OD pairs with high demand are nearby
 - Routes Observed ↑- Mean IVT ↓ (black)

- Routes Generated 1 Mean IVT 1 (blue)
- 3. Travellers have stricter thresholds for OD pairs that are nearby

 $coverage = \frac{\sum_{i,j} q_{ij}^{TP}}{\sum_{i,j} a_{ij}^{TP} + a_{ij}^{FN}}$

Case Study: The Hague Tram+Bus Discussion

- 1. OD pairs with high demand are nearby
- 3. Travellers have stricter thresholds for OD pairs that are nearby

- 2. OD pairs with more route alternatives are farther $efficiency = \frac{\sum_{i,j} |R_{ij}^{TN}| q_{ij}}{\sum_{i,j} (|R_{ij}^{FP}| + |R_{ij}^{TN}|) q_{ij}}$
- ⇒ Non-selected alternatives between far-away OD pairs disproportionately affect efficiency

Conclusions

- A constrained enumeration CSGM is developed that employs deterministic elimination-by-aspects as the behavioural model which is calibrated using smart card data
- Results from the urban public transport network in the Hague show that num. of transfers is the most important factor, followed by waiting time and in-vehicle time and that the thresholds for these are quite restrictive thresholds
- Further research aims to overcome the assumption of a frequency-based system, account for possible reasons underlying restrictive thresholds, and compare results from different non-compensatory decision models.

