Calibrating Route Choice Sets for an Urban Public Transport Network using Smart Card Data

Presenter:
Sanmay Shelat

Authors:
S. Shelat, O. Cats, N. van Oort, J.W.C. van Lint
Dept. of Transport and Planning,
Delft University of Technology
Introduction
Problem + Literature

- Choice set identification is important for estimation and application of route choice models
- It is a non-trivial task due to its combinatorial nature and dependence on traveller preferences
- Choice set identification approaches in literature can be classified as:
 1. Direct identification
 a) Asking travellers what they considered
 b) Routes observed from population (smart card data)
 2. Choice set generation methodology (CSGM)
 a) Deterministic/stochastic shortest path
 b) Constrained enumeration
Introduction
Contributions

• We propose a constrained enumeration route CSGM that:

Avoids subjective assumptions regarding traveller preferences ...
... by using (increasingly available) smart card data to calibrate parameters ...
... of an intuitive and accepted behaviour model.
Behavioural Model
Non-compensatory Decision Models

• Non-compensatory evaluation is typical for choice set formation from a large number of alternatives

1. Disjunctive/Conjunctive
 • Sets minimum thresholds for important attributes; either comply with at least one or require all thresholds to be met (e.g., detour thresholds)

2. Lexicographic
 • Attributes ranked by importance; alternatives selected on the basis of performance in top-ranking attribute (e.g., link-labelling approach)

3. Elimination-by-aspects (deterministic)
 • Combines attribute ranking and setting thresholds
 • Used in this study
Choice Set Generation Methodology

Overview

- Start
- Topology and service extraction
- Logic-based route choice set generation
- Attribute assignment by day-time
- Logical routes per OD
- Feasible routes per OD-T
- Observed routes per OD-T

- L’- & P-space representation
- Observed & generated routes merge
- Feasible routes with AFC counts
- Considered routes per OD-T

- Overall coverage
- Aspects + threshold search space
- Attribute ranking & thresholds
- End

Logic rules
Choice Set Generation Methodology
 Representation → Generated-feasible Routes

- Network represented as infrastructure (L-space) and service (P-space) graphs
- A breadth-first search algorithm is used to enumerate routes, constrained:
 - Depth-wise by a maximum of two transfers
 - Breadth-wise by disallowing loops and transfers between common lines
- The following attributes are assigned to the route alternatives for each hour:
 - Waiting time (frequency-based), in-vehicle time, number of transfers
- Infeasible routes (no service) and dominated alternatives are removed
- For the EBA calibration, observed routes not in generated-feasible route set are discarded
EBA: Calibration Route Set

- The elimination-by-aspects (EBA) method has the following parameters:
 1. Attribute ranks
 2. Attribute thresholds

- For a given EBA parameter set:
 - The calibrated route set is obtained from the generated-feasible route set
 - By removing routes that perform worse than threshold on attributes, sequentially in order of descending attribute rank

- To obtain the optimal behavioural parameters, we need performance indicators
Choice Set Generation Methodology

EBA: Indicators

Coverage:
\[
\text{coverage} = \frac{\sum_{i,j} q_{ij}^{TP}}{\sum_{i,j} q_{ij}^{TP} + q_{ij}^{FN}}
\]

Efficiency:
\[
\text{efficiency} = \frac{\sum_{i,j} |R_{ij}^{TN}| q_{ij}}{\sum_{i,j} (|R_{ij}^{FP}| + |R_{ij}^{TN}|) q_{ij}}
\]

Minimize:
\[
\min(\text{abs}(\text{coverage}_a - \text{efficiency}_a))
\]
Choice Set Generation Methodology
EBA: Brute Force Optimization

• Generally, only a few (but important) aspects/attributes are available from smart card data

• Furthermore, it is reasonable to expect that:
 • Potential thresholds are close to smallest values
 • A very high precision (<0.001) in threshold values is not required (because the differences will be imperceptible to choice makers)

• Therefore, it is feasible to employ a brute force algorithm to obtain the optimal EBA parameters
Case Study: The Hague Tram+Bus

Description

- 12 Tram + 8 Bus bidirectional lines serving 459 stations
- Smart card data from March 2015
- Weekdays, 0600h-1100h
Case Study: The Hague Tram+Bus

Results

Performance for different attribute rankings (lower is better)
- Num-T: number of transfers,
- WT: waiting time,
- IVT: in-vehicle time

Optimal attribute ranking and thresholds

<table>
<thead>
<tr>
<th>Rank</th>
<th>Attribute</th>
<th>Threshold</th>
<th>Sequential Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of transfers</td>
<td>0</td>
<td>99.3%</td>
</tr>
<tr>
<td>2</td>
<td>Waiting time</td>
<td>1.1</td>
<td>82.0%</td>
</tr>
<tr>
<td>3</td>
<td>In-vehicle time</td>
<td>1.1</td>
<td>78.4%</td>
</tr>
</tbody>
</table>
Case Study: The Hague Tram+Bus

Discussion

• Possible explanation for the rather restrictive threshold values:

• Some observations:
 1. OD pairs with high demand are nearby
 • Routes Observed ↑ - Mean IVT ↓ (black)
 2. OD pairs with more route alternatives are farther
 • Routes Generated ↑ - Mean IVT ↑ (blue)

• An hypothesis:
 3. Travellers have stricter thresholds for OD pairs that are nearby
Case Study: The Hague Tram+Bus

Discussion

1. OD pairs with high demand are nearby
2. OD pairs with more route alternatives are farther
3. Travellers have stricter thresholds for OD pairs that are nearby

⇒ Coverage values are high at low thresholds
⇒ Non-selected alternatives between far-away OD pairs disproportionately affect efficiency

 coverage = \frac{\sum_{i,j} q_{ij}^{TP}}{\sum_{i,j} q_{ij}^{TP} + q_{ij}^{FN}}

efficiency = \frac{\sum_{i,j} |R_{ij}^{TN}| q_{ij}}{\sum_{i,j} (|R_{ij}^{FP}| + |R_{ij}^{TN}|) q_{ij}}
Conclusions

- A constrained enumeration CSGM is developed that employs deterministic elimination-by-aspects as the behavioural model which is calibrated using smart card data.

- Results from the urban public transport network in the Hague show that num. of transfers is the most important factor, followed by waiting time and in-vehicle time and that the thresholds for these are quite restrictive.

- Further research aims to overcome the assumption of a frequency-based system, account for possible reasons underlying restrictive thresholds, and compare results from different non-compensatory decision models.