Combining speed adjustment and holding control for regularity-based transit operations

June 6th, 2019 MT-ITS 2019, Kraków, Poland

Authors: Aishah Mahyarni Imran Niels van Oort Oded Cats Serge Hoogendoorn Pieter van der Pot

Outline

- Introduction
- Control strategy formulation
- Application
- Results and analysis
- Conclusions

TUDelft

Introduction

Bus bunching (Source: Land Transport Guru)

ŤUDelft

Bus bunching

- Inefficient operation
- Require measures \rightarrow control strategies

Introduction

Different types of control strategies:

- Holding control
 - Holding/delaying vehicle at control point stop
 - Simple, convenient
 - Increase waiting time onboard \rightarrow longer generalized travel time
- Speed adjustment
 - Control by speeding up and slowing down the vehicle
 - Holding en-route \rightarrow cost less
 - Less stable under conditions with more variability
- Combined control strategies
 - Potential improvements

This study:

- Combine the potential of holding control and speed adjustment
- Aim at improving regularity and reducing the waiting time onboard
- Impacts?

Control strategy formulation

- Rule-based control strategy
- Assumptions:
 - 1. Real-time communication between buses (event-based)
 - 2. Runs on dedicated lane
 - 3. Neglecting acceleration and deceleration effect
 - 4. Arrival time prediction based on the scheduled trip time

Control strategy formulation

State 1: Enter link

- 1. Arrival time prediction
- 2. Headway checking
- 3. Deriving speed advice

State 2: Enter stop

- 1. Arrival time prediction
- 2. Headway/early departure checking
- 3. Departure time advice

Application

Case study of Almere, the Netherlands

- Run by Keolis Nederland
- High-frequency bus operation (h = 5 min)
- Run on dedicated lanes
- Schedule-based holding control
- Consider 2 lines: M5 (16 Stops) and M7 (17 Stops)
- AVL and APC data April-May 2018

Scenario based on trip time scheduling:

- Scenario 1: Normal condition
- Scenario 2: Tighter schedule

Passenger activity in M5 and M7 (April-May 2019)

- 1. Coefficient of Variation (CoV) headway
- 2. Generalized travel time

Lab

Results and analysis Scenario 1 – CoV headway

Proposed control strategy (SH):

- **11-63%** regularity improvement compared to holding control
- 0-39% regularity improvement compared to speed adjustmentonly (SA)

Factor affecting the effectiveness of SH:

- 1. Speed range
 - SH1 in Dir 2
- 2. Demand pattern
 - SA vs SH

Results and analysis Scenario 1 – Generalized travel time

Generalized travel time (min)								
SB	EH	EHALL	SA1	SA2	SA3	SH1	SH2	SH3
39	40	41	43	40	41	43	41	41

Proposed control strategy (SH):

- **0-4 minutes** longer generalized travel time than holding control
- 23-97% average total holding time reduction (28–93 s) compared to holding control at all stops (EHALL)
- 1-31% prolonged trip time (1-23 s longer) between stops compared to holding control

Results and analysis

Scenario 2 – CoV headway and generalized travel time

- Increase in irregularity
- Importance of arrival time prediction
- Example: Line M5 Dir 1 (-305%) and Line M7 Dir 2 (+61%)

- **ŤU**Delft
- Longer generalized travel time for all strategies (7-9% longer)

Conclusion

- Combining strategies implies combining both the positive and negative attributes of each control
- Line characteristics determine the performance of each strategy

More information/ contact

aishahmahyarni@gmail.com

• <u>http://smartptlab.tudelft.nl/</u>

