Understanding the Difference in Travel Patterns Between Docked and Dockless Bike-Sharing Systems

A Case Study in Nanjing, China Xinwei Ma¹, Yufei Yuan², Niels Van Oort², Yanjie Ji^{1,3,4}, Serge Hoogendoorn² 1. School of Transportation, Southeast University

> 2. Transport and Planning, Civil Engineering and Geosciences, Delft University of Technology 3. Jiangsu Key Laboratory of Urban ITS. Corresponding author email: jiyanjie@seu.edu.cn 4. Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies

Transportation Research Board 98th Annual Meeting, January 13-17, 2019 Session: 1499, Bicycle Transportation Research TRB Paper: 19-02471

Purpose of the Study

- ◆ Revealing the difference in travel characteristics, including travel time, travel distance and other dimensions by mining the GPS data from a dockless bike-sharing scheme and the smart card data from a docked bike-sharing scheme.
- ◆ Conducting an intercept survey and establishing a binary logistic model to measure the factors influencing travelers of making a preferred choice between two bike-sharing modes.
- ◆ Proposing effective measures to improve the performance of docked and dockless bike-sharing systems.

Study Area

Study Data Description

Dockless Bikesharing

Starting timestamps

Starting latitude

Ending latitude

Ending longitude

Starting longitude

Ending timestamps

Trip data

Bike ID

User ID

Docked Bikesharing

Bike ID

Trip start day

and time

Trip end day

and time

station ID

station ID

Trip start

♦ Trip end

Trip data

Station ID

Station name

Longitude of the

♦ Latitude of the

docking station

docking station

- ◆ Five urban districts (Xuanwu, Qinhuai, Gulou, Jianye and Yuhua) in Nanjing, where both docked and dockless bike-sharing systems are well developed were selected as the case study.
- ◆ Nanjing launched the docked and dockless bikesharing programs in January, 2013 and January, 2017 respectively.

Survey Data

Personal information

• Home location

Education level

Average monthly income

Ownership of bikes, electric

bikes (E-bikes) and cars

Occupation

Gender

Age

Perceptions

User experience

Regression Model and Survey Overview

◆ A binary logistic model is applied to explore the influencing factors of bike-sharing mode choice. The dependent variable for the choice of bike-sharing is binary: docked bike-sharing or dockless bike-sharing as their preferred choice. Three groups of independent variables include personal information, user perceptions towards dockless/docked bike-sharing and their experience of dockless/docked bike-sharing. Only those who have used both dockless and docked bike-sharing services were selected as the respondents. Five interviewers were deployed to conduct the survey in the Nanjing study area in July 2018. A total of 384 questionnaires were collected, of which 362 questionnaires were valid.

Comparative Analysis of Usage Patterns

Distribution of the travel times of dockless and docked bike-sharing

Distribution of usage frequency of dockless and docked shared bikes in a week

- Over 60% trips of both dockless bike-sharing and docked bike-sharing users last less than 15 minutes, and trips within 30 minuses take up 96.82% and 90.31% of all trips respectively.
- ◆ More than 30% of docked shared bikes are used less than 5 times in a week, and 96.54% used less than 50 times.
- ◆ For dockless bike-sharing, usage frequency reaches its peak at 30-35 times and concentrates between 20 and 80 times during one week.

Dockless (a) and Docked (b) bike-sharing usage with aggregation levels of 1 hour for dimension time and one calendar day for dimension date.

◆ Both dockless and docked bike-sharing show obvious two transfer peaks from Monday to Friday, which are 7:00-9:00 and 17:00-19:00. A small peak of dockless bike-sharing is observed between 11:00 and 13:00. During off-peak hours, the number of docked bikesharing users is lower than that of dockless bike-sharing users. On weekends, there are no significant peak hours and the transfer volume is significantly lower than that on week-

Model Results

Variables	Coef.	Odds Ratio	P> z
Personal Information			
Age group: older than 60	-4.450	0.012	0.000***
Occupation: Corporation employee	-3.645	0.026	0.000***
Average monthly income: over 20,000 (yuan: 1 yuan= US\$ 0.1487)	3.650	38.483	0.000***
E-bike ownership: Yes	-1.177	0.308	0.012**
Perceptions Towards Dockless/Docked Bike-sharing			
Two hours for free use: Reasonable	-2.645	0.071	0.000***
Preferred way of unlocking a shared bike: Mobile phone App	1.559	4.752	0.001***
Impact of discounts on your use of dockless bike- sharing: Attractive	2.878	17.775	0.000***
People using dockless bike-sharing around you affect your use of the service: Agree	2.072	7.937	0.000***
Use Experience of Dockless/Docked Bike-sharing			
Complexity of registering the dockless bike-sharing: Complex	2.328	10.260	0.005**
Frequency of unlocking broken dockless shared bikes: Always	-2.318	0.098	0.000***
N = 362			

LR chi2 = 240.7

 $\overline{\text{Pseudo}}_{R^2} = 0.4982$

***for p-value less than 0.01

**for p-value between 0.01 and 0.05

Conclusion and Recommendation

- ◆ More than 90% bike-sharing users return their bikes within 30 min, demonstrating that it is desirable to limit the free hiring time of docked bike-sharing to a period within 0.5 to 1 hour.
- ◆ Both docked and dockless bike-sharing trips on workdays are apparently more frequent than those on weekends, especially during the morning and evening rush. This result indicates that most of the bike-sharing trips are for commuting purposes.
- Retirees are less likely to use docked sharing-bikes than dockless bike-sharing. It is suggested that dockless bike-sharing firms would develop specialized mobile Apps and offer discounted deposit and rental price for them.
- ◆ It is suggested that docked bike-sharing firms would design and promote a mobile App to simplify the registration process to attract the high-income travelers, those who prefer unlocking the shared bikes with the smartphone app and those who complain about the complicated registering procedure.