Passenger Travel Time Reliability for Multi-Modal Public Transport Journeys

98th Annual Meeting of the Transportation Research Board 2019

Malvika Dixit Ties Brands Niels van Oort Oded Cats Serge Hoogendoorn

Introduction

 Reliability: 'Certainty of service aspects compared to the schedule as perceived by the user' (van Oort, N., 2016)

Reliability of travel time
Regularity
Punctuality

Motivation

- Urban transit networks typically multi-modal
- Reliability based on the whole journey experience including the transfers

Motivation

- Urban transit networks typically multi-modal
- Reliability based on the whole journey experience including the transfers
- Existing indicators
 - Focus on one mode only, or
 - Fail to include all travel time components

Requires passenger travel data at the network-level

Objective

- To develop a metric that
 - measures reliability for multi-modal transit journeys;
 - is sensitive to all travel time components; and
 - enables comparison between different transit modes and routes.
- Demonstrate its application to a real life network (Amsterdam)

Methodology - RBT

Reliability buffer time (RBT) (Chan, 2007; Uniman et al, 2010)
Difference between the 95th and 50th percentile travel time experienced by travelers between a stop-stop pair using a specific route*

$$RBT_{o,d,r} = tt_{95}^{o,d,r} - tt_{50}^{o,d,r}$$

Interpreted as the additional time passengers have to budget for their travel to ensure on-time arrival one out of twenty times

*Route : A combination of public transport services a passenger may choose, where each route may or may not include a transfer.

Data sources

- Smartcard data
 - Tap-in and tap-out location and times

- Automatic Vehicle Location (AVL) data
 - Vehicle number, stop location and time stamps

Data pre-processing

Travel time using smartcard data

- Where first tap-in at station (eg. Amsterdam Metro)
 - Total travel time (t_5-t_0)
- Where first tap-in inside vehicle (eg. Amsterdam buses & trams)
 - Total travel time minus waiting time at origin (t_5-t_1)

	Waiting time	In-vehicle time	Trans time	fer W	aiting time	In-vehicle time
 	I	Mode 1	1	I I	I I	Mode 2
t_0	t	1	t_2	t ₃	t_4	t
L						

Waiting time at origin

- For journeys where first tap-in is inside the vehicle
 - Time passenger arrived at stop is not known
 - Headway of services known (from AVL data)
 - For short headway services passengers assumed to arrive randomly
 - Continuous random variables generated and sampled over uniform distribution [0, observed headway] to estimate waiting time for each journey

Travel time reliability for multi-modal journeys

• RBT calculated for each stop-stop (OD) pair and route

$$RBT_{o,d,r} = tt_{95}^{o,d,r} - tt_{50}^{o,d,r}$$

• Weighted average calculated for each mode/line/stop

Case study : Amsterdam

- ~850,000 inhabitants
- 4 metro lines
- 15 tram lines
- 25 bus lines
- ~800,000 transactions/day
- Two weekdays (1st and 2nd March 2018) used for analysis

Results

Reliability per mode

Mode(s) used	Number of journeys	Median travel time (mins)	RBT (mins)					
Unimodal Journeys								
Metro (incl. Metro-Metro)	235,287	14.7	5.9					
Tram	315,410	15.4	6.6					
Bus	104,495	14.8	6.2					
Tram-Tram	1,755	23.2	7.2					
Multimodal Journeys								
Metro-Tram	7,588	25.0	7.6					
Metro-Bus	747	28.8	7.8					
Tram-Metro	6,665	26.3	8.3					
Bus-Metro	1,336	28.7	8.5					

Reliability of accessing transit hubs

Reliability by route used -Station Sloterdijk to Boelelaan

Reliability by route used -Station Sloterdijk to Boelelaan

Conclusion

- New metric proposed for travel time reliability measurement
 - considering multimodal transit journeys
 - including waiting and transfer times for all legs of the journey
 - consistent for all journeys comparable across modes and routes
- Demonstrated application to Amsterdam data but can be applied to other networks
- Can provide reliability at a very disaggregate level
 - flexibility of aggregation (eg. mode, transit stop and route level)
 - can be used as an input to behavioral models

Limitations and future work

- Assumed that passengers boarded the first vehicle (no denied boarding)
- Did not consider the impacts of availability of real-time information
- Low sample size
 - to be applied to a larger dataset
- Part of the 'Impact of North-South Metro Line' project
 - Reliability comparison of previous versus current network design

Thank you!

Questions?

Contact details: Malvika Dixit <u>M.Dixit-1@tudelft.nl</u> http://smartptlab.tudelft.nl/

