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Abstract More complex, efficient driver schedules reduce operator costs during 

undisrupted operations, but increase the disruption impact for passengers and operator 

once a disruption occurs. We develop an integrated framework to quantify the 

passenger and operator costs of disruptions explicitly as function of different driver 

schedule schemes. Since the trade-off between driver schedule efficiency and 

robustness can be quantified, this supports operators in their decision-making. 
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1 Introduction 

 

The Driver Scheduling Problem (DSP) for public transport networks is a well-studied 

topic in operations research (e.g. Kroon and Fischetti, 2001; Huisman et al. 2005; 

Portugal et al. 2009; De Leone and Festa, 2011). Research developments and the 

availability of advanced driver scheduling software (such as HASTUS) have resulted 

in the development and implementation of more complex driver schedules, which can 

improve operator efficiency and reduce operating costs. Where a drivers’ duty 

traditionally consisted of tasks on one vehicle only, a duty now often consists of tasks 

on different vehicles during one shift. This is implemented by ‘single-line multi-

vehicle’ scheduling – a driver changes vehicles during a shift, but remains operating 

one and the same line – or ‘multi-line multi-vehicle’ scheduling. In the latter case, a 

more complicated driver schedule is applied where driver tasks are scheduled on 

different vehicles as well as on different lines during one shift. This allows vehicles 

to operate with a different driver during a drivers’ break, and can reduce the total 

required fleet size and number of driver hours the operator requires on a network 

level.   



 
 

 

There is however a trade-off between driver schedule complexity and public transport 

robustness: albeit a more complex driver schedule reduces operator costs during 

undisrupted operations, it increases the impact of disruptions for passengers and 

operator in case a disruption occurs. More complex schedules result in longer service 

recovery times once the incident has been resolved, and in more complicated and less 

effective rescheduling: there is a risk of delay propagation over the network if a driver 

is not able to arrive in time for the next task on another line. 

 

Robust driver scheduling studies mainly incorporate minor recurrent delays by adding 

slack in the timetable (e.g. Laplagne 2008), but do not consider robustness related to 

large non-recurrent disruptions. On the other hand, studies aiming to quantify the 

passenger impact of urban public transport disruptions  (e.g. Van Oort et al. 2015b; 

Jenelius and Cats 2015; Cats et al. 2016, Yap et al. 2018c) do not incorporate driver 

schedule complexity. In our study we develop an integrated framework in which 

passenger disruption impact is explicitly quantified as function of different levels of 

driver schedule complexity. For operators to balance schedule efficiency and 

robustness, quantification of the operator impact of disruptions for different types of 

driver schedules is explicitly incorporated in this framework.  

 

 

2 Methodology 

 

Table 1 shows the notations used in our framework.  

 
Table 1 Indices and sets, parameters and variables 

Indices and sets 

𝑠, 𝑆 stop index, set 

𝑙, 𝐿 line index, set 

𝑆𝑙 set of stops on line 𝑙, 𝑆𝑙 ⊆ 𝑆 

𝑙
= {𝑠𝑙,1, 𝑠𝑙,2, … , 𝑠𝑙,|𝑙|} 

line 𝑙 is defined as ordered sequence of stops 

𝑟, 𝑅 run index, set 

𝑅𝑙 set of runs on line 𝑙, 𝑅𝑙 ⊆ 𝑅 

𝑖 index for disruption 

ℎ hourly time period 

Parameters 

𝛽1 weight of perceived passenger waiting time 

𝛽2 operator revenue for average passenger journey  

𝛽3 operator costs for each hour of personnel overtime 

𝛽4 operator fine for run with too early departure 

𝛽5 operator fine for run with too late departure 

𝛽6 operator fine for cancelled run 

𝛽7 operator fine for unavailable infrastructure per hour 

𝐸𝑑 demand elasticity 

𝑉𝑜𝑇 Value-of-Time 

𝛾 crowding in-vehicle time multiplier 

𝛾𝑠  crowding in-vehicle time multiplier at seat capacity 

𝛾𝑐  crowding in-vehicle time multiplier at crush capacity 

𝜑𝑟
𝑠 seat capacity of run 𝑟 



 
 

 

𝜑𝑟
𝑐 crush capacity of run 𝑟 

Variables 

𝑡̃𝑟𝑠
𝑎  scheduled arrival time of run 𝑟 at stop 𝑠 

𝑡̃𝑟𝑠
𝑑  scheduled departure time of run 𝑟 from stop 𝑠 

𝑡𝑟𝑠
𝑎  arrival time of run 𝑟 at stop 𝑠 

𝑡𝑟𝑠
𝑑  departure time of run 𝑟 from stop 𝑠 

𝑡𝑟𝑠𝑙
𝑖𝑣𝑡 passenger in-vehicle time of run 𝑟 from stop 𝑠𝑙 to 𝑠𝑙+1 

𝑡𝑟𝑠𝑙
𝑖𝑣𝑡,𝑝

 perceived passenger in-vehicle time of run 𝑟 from stop 𝑠𝑙 to 𝑠𝑙+1 

𝑡𝑠
𝑤𝑡𝑡 passenger waiting time at stop 𝑠 

𝑡𝑠𝑖𝑠𝑗
𝑝

 generalized passenger travel time for journey from stop 𝑖 to stop 𝑗 

𝑡𝑖 duration of disruption 

𝑡𝑜 personnel overtime hours per disruption 

𝑐𝑜
𝑖  operator costs of disruption 

𝑓𝑙
ℎ frequency of line 𝑙 during hour ℎ 

𝑑𝑟 headway between run 𝑟 and subsequent run 𝑟+ 

𝑞𝑟𝑠 passenger load on-board run r between stop 𝑠 and subsequent stop 

𝑞𝑟𝑠
𝑖𝑛 number of passengers boarding run 𝑟 at stop 𝑠 

 

To quantify the costs of a public transport disruption we develop a framework as 

shown in Figure 1.  

 

 
Fig. 1 Framework to quantify disruption costs compared to driver schedule costs 



 
 

 

Costs are divided into passenger costs and operator costs, which both consist of 

several components. The (societal) disruption costs for passengers consist of the 

additional in-vehicle time, waiting time and perceived in-vehicle time due to 

crowding, all expressed in monetary terms. The additional in-vehicle time equals the 

delay of each run 𝑟 ∈ 𝑅 due to this disruption, multiplied by the passenger flow 𝑞𝑟𝑠 
travelling over the disrupted link between 𝑠𝑙 and 𝑠𝑙+1 (Eq.1). 

 

△ 𝑡𝑖𝑣𝑡 =∑(((𝑡𝑟𝑠𝑙+1
𝑎 − 𝑡̃𝑟𝑠𝑙+1

𝑎 ) − (𝑡𝑟𝑠𝑙
𝑑 − 𝑡̃𝑟𝑠𝑙

𝑑 )) ∗ 𝑞
𝑟𝑠𝑙
)

𝑟∈𝑅

∗ 𝑉𝑜𝑇 

(1) 

 

The additional waiting time is quantified by comparing the scheduled and realized 

headway, incorporating the Percentage Regularity Deviation Mean (PRDM) as 

measure for irregularity for each service hour (Van Oort & Van Nes 2009) (Eq.2). 

Given our focus on urban, high frequent public transport services, a random passenger 

arrival pattern is assumed resulting in the quantification of additional waiting time 

due to irregularity as shown in Eq.3.  

 

𝑃𝑅𝐷𝑀ℎ =

∑ |
𝑑𝑟
ℎ − 𝑑̃𝑟

ℎ

𝑑̃𝑟
ℎ  |𝑟ℎ∈𝑅ℎ
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         (2) 

 

△ 𝑡𝑤𝑡𝑡 =∑((
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ℎ
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(3) 

 

Since large disruptions can result in service cancellations and more irregular service 

headways, the average crowding level on the remaining runs is expected to increase. 

As crowding results in a higher perceived in-vehicle time, this component is 

quantified as well (Eq.4). For the public transport lines directly affected by the 

disruption, as well as parallel lines used as alternative route by passengers, for each 

run and each link the average crowding level is compared between an average 

undisrupted day and during the disruption, thereby correcting for seasonal effects and 

day of the week. Based on the vehicle seat capacity 𝜑𝑟
𝑠 and crush capacity 𝜑𝑟

𝑐 and 

their corresponding crowding multipliers 𝛾𝑟
𝑠 and 𝛾𝑟

𝑐, the realized in-vehicle time is 

multiplied by a crowding multiplier 𝛾𝑟𝑠. In line with e.g. Wardman and Whelan (2011) 

and Yap et al. (2018a), 𝛾𝑟𝑠 is assumed to be a linear piecewise function between 50% 

seat occupancy, seat capacity and crush capacity (Eq.5). 

 

△ 𝑡𝑖𝑣𝑡,𝑝 = ∑ ∑ ((𝑞
𝑟𝑠
𝑖 ∗ (𝑡

𝑟𝑠+1
𝑎 − 𝑡𝑟𝑠

𝑑 ) ∗ 𝛾
𝑟𝑠
) − (𝑞

𝑟𝑠
𝑗≠𝑖 ∗ (𝑡

𝑟𝑠+1
𝑎 − 𝑡𝑟𝑠

𝑑 ) ∗ 𝛾
𝑟𝑠
) ∗ 𝑉𝑜𝑇

𝑠𝑙,1∈𝑠𝑙,|𝑙|𝑟ℎ∈𝑅ℎ

 

         (4) 

 



 
 

 

𝛾𝑟𝑠 =

{
 
 

 
 
0.95                                                                       𝑖𝑓 𝑞𝑟𝑠 ≤ 0.5 ∗ 𝜑𝑟

𝑠  

0.95 + (
𝑞𝑟𝑠 − 0.5 ∗ 𝜑𝑟

𝑠

0.5 ∗ 𝜑𝑟
𝑠 ) ∗ (𝛾𝑟

𝑠 − 0.95)       𝑖𝑓0.5 ∗ 𝜑𝑟
𝑠 < 𝑞𝑟𝑠 < 𝜑𝑟

𝑠

𝛾𝑟
𝑠 + (

𝑞𝑟𝑠 − 𝜑𝑟
𝑠

𝜑𝑟
𝑐 −𝜑𝑟

𝑠) ∗ (𝛾𝑟
𝑐 − 𝛾𝑟

𝑠)                                   𝑖𝑓 𝑞𝑟𝑠 > 𝜑𝑟
𝑠  

 

         (5) 

 

One component of operator disruption costs is the lost revenues following a loss of 

public transport demand due to the impact of disruptions. Although long-term 

ridership impacts from disruptions are difficult to predict, we used a simple elasticity-

based approach as applied by Van Oort et al. (2015a), using parameters calibrated for 

planned disruptions based on smart card data (Yap et al. 2018b). For a given time 

period 𝑇, the generalized travel time is calculated for the disrupted and undisrupted 

scenario (Eq.6). The generalized costs equal the weighted sum for the disrupted 

scenario 𝑖 and undisrupted scenario 𝑗 ≠ 𝑖, as ratio of the duration of a disruption 𝑡𝑖 
compared to 𝑇, and is compared to a scenario with no disruptions during 𝑇 (Eq.7).  

𝑡̅𝑝 =
∑ ∑ ((𝑡𝑠𝑖

𝑤𝑡𝑡 ∗ 𝛽
1
+ 𝑡𝑠𝑖,𝑠𝑗

𝑖𝑣𝑡,𝑝) ∗ 𝑞
𝑠𝑖,𝑠𝑗
)𝑠𝑗∈𝑆𝑗𝑠𝑖∈𝑆𝑖

∑ ∑ 𝑞
𝑠𝑖,𝑠𝑗𝑠𝑗∈𝑆𝑗𝑠𝑖∈𝑆𝑖

 

(6) 

 

∆𝑞 = (𝐸𝑑 ∗ (
𝑡̅𝑝𝑖∗𝑡𝑖+(𝑡̅𝑝𝑗≠𝑖∗(𝑇−𝑡𝑖))

𝑡̅𝑝𝑗≠𝑖∗𝑇
− 1) + 1) ∗ ∑ ∑ 𝑞

𝑠𝑖,𝑠𝑗𝑠𝑗∈𝑆𝑗𝑠𝑖∈𝑆𝑖   

         (7) 

 

The demand loss is quantified in Eq.8 by multiplication of ∆𝑞 with the average 

passenger revenue. Due to the unannounced and relatively heavy impact of unplanned 

disruptions compared to planned disruptions, this cost component can be considered 

a lower bound. For each disruption the extra overtime hours for personnel, the number 

of early runs (departure before scheduled departure time), late runs (departure later 

than scheduled departure time plus threshold ∆) or cancelled runs, and the time the 

infrastructure is not available, are multiplied with their corresponding cost parameters 

(Eq.8). For the latter four components, the values of the cost parameters are usually 

specified in the contract between operator and authority, indicating the fine for each 

early, late or cancelled run, or for each hour that no PT services can be provided on a 

link resulting from infrastructure unavailability. 

 

𝑐𝑜
𝑖 = 𝛽2 ∗ ∆𝑞+ 𝛽3 ∗ 𝑡+𝛽4 ∗∑ 𝑟𝑒

𝑟∈𝑅

+ 𝛽5 ∗∑ 𝑟𝑙

𝑟∈𝑅

+ 𝛽6 ∗∑ 𝑟𝑐+ 𝛽7 ∗ 𝑡
𝑖

𝑟∈𝑅

 

 

𝑤𝑖𝑡ℎ 𝑟𝑒 {
1 𝑖𝑓𝑡𝑟𝑠

𝑑 < 𝑡̃𝑟𝑠
𝑑   

0 𝑖𝑓 𝑡𝑟𝑠
𝑑 ≥ 𝑡̃𝑟𝑠

𝑑 ,   𝑟
𝑒 {
1 𝑖𝑓𝑡𝑟𝑠

𝑑 > 𝑡̃𝑟𝑠
𝑑 + ∆ 

0 𝑖𝑓 𝑡𝑟𝑠
𝑑 ≤ 𝑡̃𝑟𝑠

𝑑 + ∆
,  𝑟𝑐 {

1 𝑖𝑓𝑟𝑢𝑛 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑 
0 𝑖𝑓 𝑟𝑢𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑      

 

         (8) 

3 Case study 

 



 
 

 

We apply our framework to the urban public transport network of The Hague, the 

Netherlands, which consists of 12 light rail / tram lines and 8 urban bus lines. One 

large disruptions on the light rail track is considered as case study (Figure 2), which 

occurred Wednesday January 6th, 2016 due to a switch failure between 11:22h and 

14:33h. At 19:38h all services were running according to schedule again. The 

disruption resulted in splitting light rail services 3 and 4, normally operating between 

the city of The Hague and the satellite city Zoetermeer (Figure 2 purple and orange, 

respectively) in a western and eastern part and cancellation of some services due to 

turning capacity constraints.  

 

 
Fig. 2 Urban public transport case study network The Hague 

 

To demonstrate our proposed framework, we compare the disruption costs and driver 

schedule costs for two different driver schedule scenarios for this disruption.  

 

Scenario 1: multi-line multi-vehicle schedule with punctuality-based rescheduling 

This scenario describes the situation as currently applied by the operator of the case 

study, namely applying a multi-line multi-vehicle driver schedule. A punctuality-

based rescheduling approach is applied, aiming to let the remaining services depart 

according to schedule where possible. Although headway-based control is preferred 

from a passenger perspective, interviews with public transport controllers indicate 

that the complexity of the multi-line multi-vehicle schedule requires punctuality-

based control. By trying to keep departure times of remaining services close to 

schedule, delay propagation to other lines – resulting from drivers arriving earlier or 

later than scheduled for the next task of their shift on another line – is aimed to be 

reduced. The operator does not use rescheduling software which allows for headway-

based control when this relatively complex multi-line multi-vehicle schedule is 

applied.  

 

The components of our framework related to passenger disruption costs are quantified 

directly using realized Automated Fare Collection (AFC) and Automated Vehicle 

Location (AVL) data for the Wednesday the disruption occurred, and three other 

Wednesdays of the same month without disruptions, so that particularly the disruption 

impact on crowding can be compared to regular, undisrupted days. AVL data is also 

used to quantify the number of early, late and cancelled services. Based on AVL data, 

log-files and information provided by public transport schedulers, the number of 

personnel overtime hours and the time the infrastructure was unavailable for PT 

The Hague 

Zoetermeer 



 
 

 

services are determined for this scenario. Parameter values for operator fines 𝛽3 to 𝛽7 

are determined from the contractual agreements between PT operator and authority. 

 

Scenario 2 single-line multi-vehicle schedule with headway-based rescheduling 

We contrast the disruption costs of scenario 1 with scenario 2, a scenario which 

evaluates the passenger and operator disruption costs in case a single-line multi-

vehicle driver schedule would be applied. In this case, drivers only shift between 

vehicles of the same line during one duty. This has two effects. First, headway-based 

control can be applied to remaining services, since there is no risk of delay 

propagation to other lines (HTM, 2015). Second, this less complex driver schedule 

reduces the recovery time of PT services from the disruption, which reduces both the 

passenger disruption costs, and the personnel overtime hours.  

 

Since this scenario is currently not applied by the case study operator, the disruption 

costs cannot be inferred directly from AFC, AVL and log-data in this case. Values for 

this scenario can be obtained by combining quantitative and qualitative sources. 

Based on realized AFC and AVL data when applying punctuality-based control, we 

can simulate the disruption impact on passenger in-vehicle time, waiting time and 

crowding if all remaining services would be supplied with an equal headway in case 

of headway-based control. When applying our framework, headway-based control 

affects the additional waiting time. We calculated the PRDM for an average 

undisrupted day based on AVL data (which equals 0.2 for our case study services), 

and constrained the PRDM for each disruption hour to this value to quantify the 

reduced additional waiting time. Based on the remaining services and the PRDM 

being capped at a value of 0.2, the perceived service frequency can be calculated (Van 

Oort and Van Nes 2009). By dividing the hourly passenger load equally by the 

perceived service frequency, the expected occupancy for each run is calculated, 

resulting in monetized additional perceived in-vehicle time due to crowding for this 

scenario. The generalized travel time during disruptions is updated as consequence, 

adjusting the expected revenue loss from demand reduction. Personnel overtime hours 

are expected to decrease linearly with the service recovery time reduction (HTM, 

2015). Based on calculations of the impact of different driver schedule types on 

service recovery time performed by the case study operator, and interviews held with 

public transport schedulers and controllers, the service recovery time is expected to 

reduce by ≈50% (De Bont and Wagemans, 2015). This allows quantification of the 

reduced costs from personnel overtime, as well as the shortened passenger impact of 

the disruption. Services are now assumed to operate according to an undisrupted day 

2.5 hours after the disruption has been resolved (at 17:00h), instead of the service 

recovery time of 5 hours which is currently the case.  

 

Multiplication of the disruption costs by the yearly number of disruptions based on 

log-data allows for the quantification of yearly passenger and operator costs for 

different driver schedule scenarios. The reduced disruption costs resulting from a less 

complex driver schedule can then be compared to the increased driver schedule costs, 

so that the trade-off between disruption and schedule costs can be monetized. 

 

4 Results 

 



 
 

 

4.1 Results 

 

From Figure 3 we can conclude that one non-recurrent disruption on the considered 

light rail network currently (scenario 1: multi-line multi-vehicle scheduling with 

punctuality-based control) costs ≈€65,000, consisting of ≈€36,000 passenger costs 

and ≈€29,000 operator costs. The additional waiting time costs and long-term 

revenue loss are the most important cost components.  

 

 

Fig. 3 Costs per disruption per component for different driver schedule types 

 

When scenario 2 – single-line multi-vehicle scheduling with headway-based control 

– would be applied, total disruption costs are expected to decrease by 45% to 

≈€36,000 per disruption. This is especially caused by less additional waiting time and 

lower additional perceived in-vehicle time, due to the improved regularity between 

services and shorter service recovery times. This, in turn, reduces revenue losses from 

long-term passenger demand decrease. When extrapolating these costs to yearly costs 

based on the frequency of non-recurrent disruptions, one can conclude from Figure 4 

that yearly disruption costs are expected to be equal to ≈€1.1 million and ≈€0.6 

million for scenario 1 and scenario 2, respectively. 

 



 
 

 

Fig. 4 Yearly passenger and operator disruption costs for different driver schedule types 

 

In Figure 5 the trade-off between disruption costs and driver schedule costs is 

quantified for single-line multi-vehicle scheduling (scenario 2) compared to the 

current multi-line multi-vehicle scheduling (scenario 1) applied to the case study 

network. A less complex and less efficient driver schedule without shifts between 

different lines increases the direct driver schedule costs by €300,000 (HTM, 2015), 

but reduces the total disruption costs by €500,000 and is beneficial from a societal 

perspective. The operator disruption costs are reduced by €200,000, showing that 

purely the financial robustness benefits of this less complex driver schedule do not 

outweigh the costs. 

 

 
Fig. 5 Cost-Benefit Analysis for trade-off between disruption and driver schedule costs 

 

4.2 Sensitivity analysis 

 

A sensitivity analysis is performed to the two most uncertain parameters: the demand 

elasticity and the impact of single-line multi-vehicle scheduling on service recovery 

time reduction. We experimented with values of -0.3 and -0.7 for demand elasticity, 

compared to the default value of -0.5 [-40%,+40%]. For the reduction in service 

recovery time, a reduction of 30% and 70% was tested next to the default value of 

50% [-40%,+40%]. 



 
 

 

 

 

Fig. 6 Sensitivity analysis to demand elasticity (-0.3: upper left / -0.7 (lower left) and service 

recovery time reduction (30%: upper right / 70%: lower right) 

 

Figure 6 shows that a 40% less negative demand elasticity parameter of -0.3 reduces 

the operator robustness benefits of Scenario 2 by €50,000, showing a relatively 

limited sensitivity of the outputs to this parameter value. If service recovery time 

reduction is 40% less than assumed, operator robustness benefits reduce by almost 

€100,000, whereas total robustness benefits reduce by €300,000. Results show to be 

especially sensitive to this parameter, indicating that more in-depth research to this 

value is recommended. 
 

 

5 Conclusions 
 

In this study we develop a framework to quantify the passenger and operator costs of 

disruptions explicitly as function of different driver schedule schemes. This supports 

operators in their decision-making, since the trade-off between driver schedule 

complexity and efficiency on the one hand, and robustness on the other hand, can be 

quantified. We test our proposed framework for one large, non-recurrent disruption 

on the case study network of The Hague, the Netherlands. Results for this case study 

show that when applying a less complex, single-line multi-vehicle driver schedule, 

total monetized passenger and operator robustness benefits outweigh the increased 

driver schedule costs. The financial robustness benefits for the operator solely are 

however smaller than the increased operator costs resulting from a less efficient driver 

schedule. We recommend particularly more in-depth research to the impact of 

different types of driver schedules on (the reduction of) service recovery time from a 

disruption.  
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