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Relevance: complex driver schedules 

• Public transport driver schedules increasingly complex: 
o Driver Scheduling Problem (DSP) well-known topic in OR 
o Push for higher efficiency in PT operations 
o More advanced scheduling software (e.g. HASTUS) available 
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Study objective 

• Problem statement: 
o More complex driver schedule reduces operator costs during 

undisrupted situations 
o More complex driver schedule increases disruption costs 
o Impact of driver schedule on disruption costs hardly considered 

 
• Development of framework which integrates driver schedule 

and PT disruption costs: 
o Quantify both components  express in same monetary units 
o Quantify PT disruption costs as function of driver schedule type 
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Passenger disruption costs (1) 

• In-vehicle time △ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: 
o Disrupted link from stop 𝑠𝑠𝑙𝑙 to stop 𝑠𝑠𝑙𝑙+1 
o Additional running time compared to schedule for each run 𝑟𝑟 
o Multiplied by passenger flow 𝑞𝑞𝑟𝑟𝑠𝑠𝑙𝑙  

△ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 = � 𝑡𝑡𝑟𝑟𝑠𝑠𝑙𝑙+1
𝑎𝑎 − �̃�𝑡𝑟𝑟𝑠𝑠𝑙𝑙+1

𝑎𝑎 − 𝑡𝑡𝑟𝑟𝑠𝑠𝑙𝑙
𝑑𝑑 − �̃�𝑡𝑟𝑟𝑠𝑠𝑙𝑙

𝑑𝑑 ∗ 𝑞𝑞𝑟𝑟𝑠𝑠𝑙𝑙
𝑟𝑟∈𝑅𝑅

∗ 𝑉𝑉𝑉𝑉𝑉𝑉 

 
• Waiting time △ 𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖:  

o Use PRDM to express service irregularity (Van Oort & Van Nes 2009) 

o Average waiting time compared to scheduled waiting time 
o For each hour of the day ℎ; multiplied by coefficient 𝛽𝛽1 

△ 𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖 = �
60

2 ∗ 𝑓𝑓𝑙𝑙ℎ
∗ 1 + (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ2) − (

60
2 ∗ 𝑓𝑓𝑙𝑙ℎ

) ∗ 𝛽𝛽1 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉
ℎ∈𝐻𝐻
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Passenger disruption costs (2) 

• Perceived in-vehicle time due to crowding △ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝: 
o Multiplication of realized in-vehicle time with crowding multiplier 
o Compare between disrupted case 𝑖𝑖 and undisrupted case 𝑗𝑗 ≠ 𝑖𝑖 

 

△ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝 = � � (𝑞𝑞𝑟𝑟𝑠𝑠𝑖𝑖 ∗ (𝑡𝑡𝑟𝑟𝑠𝑠+1𝑎𝑎 −𝑡𝑡𝑟𝑟𝑠𝑠𝑑𝑑 ∗ 𝛾𝛾𝑟𝑟𝑠𝑠) − 𝑞𝑞𝑟𝑟𝑠𝑠
𝑗𝑗≠𝑖𝑖 ∗ (𝑡𝑡𝑟𝑟𝑠𝑠+1𝑎𝑎 −𝑡𝑡𝑟𝑟𝑠𝑠𝑑𝑑 ) ∗ 𝛾𝛾𝑟𝑟𝑠𝑠 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉

𝑠𝑠𝑙𝑙,1∈𝑠𝑠𝑙𝑙, 𝑙𝑙𝑟𝑟ℎ∈𝑅𝑅ℎ
 

 
• Calculation of crowding multiplier 𝛾𝛾𝑟𝑟𝑠𝑠 (Wardman & Whelan 2010): 

o Based on seat capacity 𝜑𝜑𝑟𝑟𝑠𝑠 and crush capacity 𝜑𝜑𝑟𝑟𝑐𝑐 
o Increases linearly based on corresponding multipliers 𝛾𝛾𝑟𝑟𝑠𝑠 and 𝛾𝛾𝑟𝑟𝑐𝑐   

 
 

𝛾𝛾𝑟𝑟𝑠𝑠 =

0.95                                                                       𝑖𝑖𝑓𝑓 𝑞𝑞𝑟𝑟𝑠𝑠 ≤ 0.5 ∗ 𝜑𝜑𝑟𝑟𝑠𝑠  

0.95 +
𝑞𝑞𝑟𝑟𝑠𝑠 − 0.5 ∗ 𝜑𝜑𝑟𝑟𝑠𝑠

0.5 ∗ 𝜑𝜑𝑟𝑟𝑠𝑠
∗ 𝛾𝛾𝑟𝑟𝑠𝑠 − 0.95        𝑖𝑖𝑓𝑓0.5 ∗ 𝜑𝜑𝑟𝑟𝑠𝑠 < 𝑞𝑞𝑟𝑟𝑠𝑠 <  𝜑𝜑𝑟𝑟𝑠𝑠

𝛾𝛾𝑟𝑟𝑠𝑠 +
𝑞𝑞𝑟𝑟𝑠𝑠 − 𝜑𝜑𝑟𝑟𝑠𝑠

𝜑𝜑𝑟𝑟𝑐𝑐 − 𝜑𝜑𝑟𝑟𝑠𝑠
∗ 𝛾𝛾𝑟𝑟𝑐𝑐 − 𝛾𝛾𝑟𝑟𝑠𝑠                                    𝑖𝑖𝑓𝑓 𝑞𝑞𝑟𝑟𝑠𝑠 > 𝜑𝜑𝑟𝑟𝑠𝑠  
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Operator disruption costs 

• Long-term loss of ridership ∆𝑞𝑞 (Van Oort et al. 2015):  
o Approach based on simple generalized cost elasticity 𝐸𝐸𝑑𝑑  
o Weighted average generalized costs 𝑡𝑡̅𝑝𝑝𝑖𝑖 between disrupted 

time 𝑡𝑡𝑖𝑖 and undisrupted time 𝑉𝑉 − 𝑡𝑡𝑖𝑖 
 

∆𝑞𝑞 = 𝐸𝐸𝑑𝑑 ∗
𝑡𝑡̅𝑝𝑝𝑖𝑖 ∗ 𝑡𝑡𝑖𝑖 + 𝑡𝑡̅𝑝𝑝𝑗𝑗≠𝑖𝑖 ∗ 𝑉𝑉 − 𝑡𝑡𝑖𝑖

𝑡𝑡̅𝑝𝑝𝑗𝑗≠𝑖𝑖 ∗ 𝑉𝑉
− 1 + 1 ∗ � � 𝑞𝑞𝑠𝑠𝑖𝑖,𝑠𝑠𝑗𝑗

𝑠𝑠𝑗𝑗∈𝑆𝑆𝑗𝑗𝑠𝑠𝑖𝑖∈𝑆𝑆𝑖𝑖

 

 
• Components operator costs 𝑐𝑐𝑜𝑜𝑖𝑖 : 

o Revenue loss: 𝛽𝛽2 ∗ ∆𝑞𝑞 
o Personnel overtime hours costs: 𝛽𝛽3 ∗ 𝑡𝑡 
o Fine too early, too late and cancelled trips: 
  𝛽𝛽4 ∗ ∑ 𝑟𝑟𝑒𝑒𝑟𝑟∈𝑅𝑅 + 𝛽𝛽5 ∗ ∑ 𝑟𝑟𝑙𝑙𝑟𝑟∈𝑅𝑅 + 𝛽𝛽6 ∗ ∑ 𝑟𝑟𝑐𝑐𝑟𝑟∈𝑅𝑅  
o Fine infrastructure unavailability: 𝛽𝛽7 ∗ 𝑡𝑡𝑖𝑖 
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Case study: disruption 

• Case study: urban PT network The Hague, the Netherlands 
• Switch failure light rail at Laan van NOI station:  

o 11:22 – 11:26: activation rescheduling procedure 
o 11:26 – 14:33: active rescheduling procedure during disruption 
o 14:33 – 19:38: service recovery after disruption resolved 
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Case study: driver schedules 

• Scenario 1: multi-line multi-vehicle driver schedule:  
o Schedule-based rescheduling 
o Situation as currently applied by PT operator 
o Empirical quantification based on (fusion of) AFC + AVL data 

 
• Scenario 2: single-line multi-vehicle driver schedule: 

o Headway-based rescheduling: no risk on delay propagation 
o Shorter recovery time  reduction disruption costs + overtime 
o Quantification based on equal hourly vehicle distribution 

o Same irregularity (PRDM) as during undisrupted case 
o Passenger load equally divided by perceived frequency 

 

• Extrapolation to yearly costs based on disruption log-data 
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Results: costs per disruption 

• Monetised costs per disruption (€): 
o Scenario 1: €29k (operator) + €36k (pax) = €65k (€1.1M yearly) 
o Scenario 2: €17k (operator) + €19k (pax) = €36k (€0.6M yearly) 
o Total disruption costs decrease by 45% in scenario 2 
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Results: cost-benefit analysis 

• Monetised trade-off between disruption costs and driver 
schedule costs: 
o Implementation of single-line multi-vehicle schedule + regularity 
o Driver schedule costs increase by €300k 
o Operator costs during disruptions decrease by €200k 
o Societal costs (operator + passenger) decrease by €500k 
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Discussion and conclusions 

• Benefits of complex driver schedule are overestimated if 
increased disruption costs are not considered: 
o Initial cost reduction of €300k 
o However: €200k costs / revenue loss  
o However: €500k total societal costs 

 
• Role PT authority to bridge gap financial vs. societal costs? 

 
• Further research (based on sensitivity analysis) : 

o More detailed study to service recovery time reduction 
o More detailed study to long-term demand elasticity value  
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Results: sensitivity analysis 

• Results sensitive to reduction service recovery time (50%) 
o Value of 30% (-40%) reduces operator benefits scenario 2 by 

€100k 
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Results: sensitivity analysis 

• Limited sensitivity to demand elasticity parameter (-0.5) 
o Value -0.3 (-40%) reduces operator benefits scenario 2 by €50k 
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