Driver schedule efficiency vs. public transport robustness:

A framework to quantify this trade-off based on passive data

Ir. Menno Yap Dr. ir. Niels van Oort

M.D.Yap@TUDelft.nl

Smart Public Transport Lab <u>www.smartPTlab.TUDelft.nl</u>

July 24th, 2018

Relevance: complex driver schedules

Introduction

Methodology

Case study

Results

Conclusions

Public transport driver schedules increasingly complex:

- Driver Scheduling Problem (DSP) well-known topic in OR 0
- Push for higher efficiency in PT operations Ο
- More advanced scheduling software (e.g. HASTUS) available 0

Single-line single-vehicle Duty: 1 line, 1 vehicle

Dienst:	48151 zo		Den Haag, Ce	ntraal S	Station	
c	3/04/2017			H]	M	
Start: 10:	34 Einde:	17:48	Lengte: 6h43		Spread: 7h13	
Lijn	Code	Vertrek	Van	Naar	Aankomst	
6	02	10:34	CSt2	LGe1	10:53	Driver
6		10:56	LGe1	LNoi	11:34	schodulo
		11:34	Rustmoment		11:45	schedule
6	02	11:45	LNo1	LGe1	12:23	complexitv
6		12:26	LGe1	LNo1	13:07	
6		13:15	LNo1	LGe1	13:55	
6		13.58	LGe1	LNo1	14.39	
and a second		14:39	Pauze		15:15	
6	02	15:15	LNo1	LGet	15:55	
6		15:58	LGe1	LNo1	16:39	
6		16:45	LNo1	LGe1	17:25	
6		17:28	LGe1	CSt3	17:48	Fictitious exan

2 example

Relevance: complex driver schedules

Introduction

Methodology

Case study

Results

Conclusions

14	
TU	Delft

Public transport driver schedules increasingly complex:

- Driver Scheduling Problem (DSP) well-known topic in OR
- Push for higher efficiency in PT operations
- More advanced scheduling software (e.g. HASTUS) available

Single-line multi-vehicle Duty: 1 line, >1 vehicle

Die	enst	48153 zo			Ren	nise L	jsterb	95	
	03	/04/2017					11	M	
Start	: 15:28	B Einde:	22:1	6	Lengte:	6h17		Spread:	6h47
Lijn	121	Code	Vertr	rek	Van	1 ····	Naar	Aar	komst
MAT	CAR	41	15:2	28	RVL		LGe1	15:	40
		Voertu	igwis	ssel (a	ankomst	tVT:	15:40)		
6		03	15:4	3	LGe1		LNo1	16:	24
6			16:3	0	LNo1		LGe1	17:	10
6			17:1	3	LGe1		LNo2	17:	53
_	1000		17:5	3	Pauze			18:	30
6		03	18:3	30	LNo2		LGe1	19:	08
6			19:1	1	LGe1	Sec. 1	LNo1	19:	50
			19:5	50	Rustmon	nent		20.	15
	and a	Voertu	igwis	ssel (a	ankomst	VT:	20:15)		
6		02	20.1	5	LNo1		LGet	20:	53
6			20:5	6	LGe1		LNo2	21:	36
MAT	7/6		21:3	6	LNo2		RVL	22:	10
			22.1	0	Wagen V	Venz		22.	16

Driver schedule complexity

3

Relevance: complex driver schedules

Introduction

Methodology

Case study

Results

Conclusions

Public transport driver schedules increasingly complex:

- Driver Scheduling Problem (DSP) well-known topic in OR
- Push for higher efficiency in PT operations

• More advanced scheduling software (e.g. HASTUS) available

Multi-line multi-vehicle Duty: >1 line, >1 vehicle

Dienst: 48150				Remise Lijsterbes				
	03/04/2	20	-		HT	M		
Start: 1	0:29	Einde:	18:46	Lengte: 7h47		Spread: 8h17		
Lin		Code	Vertrek	Van	Naar	Aankomst		
_			10:29	Wagen Klaarr	n.	10:39		
MATIS		07	10:39	RVL	LNo2	11:15		
6			11:15	LNo2	LGe1	11:53		
6			11:56	LGe1	LNo2	12:34		
-			12:34	Rustmoment		12:45		
6	27. 2	07	12:45	LNo2	LGe1	13:25		
6		01	13.28	LGe1	LNo2	14:09		
×		21.00	14:09	Pauze	LITOL	14:45		
6		07	14.45	I No2	L Ge1	15:25		
6			15:28	LGe1	LNo1	16:09		
6			10:15	LN01	Liter	10.55		
Č .			Voer	tuigwissel	2001			
MAT/C	AR	41	10.07	LGet	RVL	17:09		
		THE OWNER WATER	17:09	Rustmoment		17:31		
			1/ 31	Lopen RVI-G	052	17:41		
<		Voertu	igwissel	(aankomst VT:	17:41)			
12		01	17.41	0002	DuDI	17:48		
12	-	R R ST ST	17:56	DuD1	RwP1	18:21		
MAT/12	2		18:21	RwP1	RVL	18:40		
			18:40	Wagen Wegz		18:46		

Driver schedule complexity

Study objective

Introduction

Methodology

Case study

Results

Conclusions

TUDelft

Problem statement:

- More complex driver schedule *reduces* operator costs during undisrupted situations
- More complex driver schedule *increases* disruption costs
- Impact of driver schedule on disruption costs hardly considered
- Development of framework which integrates driver schedule and PT disruption costs:
 - Quantify both components \rightarrow express in same monetary units
 - Quantify PT disruption costs as function of driver schedule type

Passenger disruption costs (1)

Introduction

Methodology

Case study

Results

Conclusions

In-vehicle time $\triangle t^{ivt}$:

- Disrupted link from stop s_l to stop s_{l+1}
- Additional running time compared to schedule for each run r
- Multiplied by passenger flow q_{rs_1}

$$\Delta t^{ivt} = \sum_{r \in R} \left(\left(\left(t^{a}_{rs_{l+1}} - \tilde{t}^{a}_{rs_{l+1}} \right) - \left(t^{d}_{rs_{l}} - \tilde{t}^{d}_{rs_{l}} \right) \right) * q_{rs_{l}} \right) * VoT$$

- Waiting time $\triangle t^{wtt}$:
 - Use PRDM to express service irregularity (Van Oort & Van Nes 2009)
 - Average waiting time compared to scheduled waiting time
 - For each hour of the day *h*; multiplied by coefficient β_1

$$\Delta t^{wtt} = \sum_{h \in H} \left(\left(\frac{60}{2 * f_l^h} \right) * \left(1 + (PRDM^{h^2}) \right) - \left(\frac{60}{2 * \tilde{f}_l^h} \right) \right) * \beta_1 * VoT$$

Passenger disruption costs (2)

Introduction

Methodology

Case study

- Perceived in-vehicle time due to crowding $\Delta t^{ivt,p}$:
 - Multiplication of realized in-vehicle time with crowding multiplier
 - Compare between disrupted case *i* and undisrupted case $j \neq i$

$$\Delta t^{ivt,p} = \sum_{r^{h} \in \mathbb{R}^{h}} \sum_{s_{l,1} \in s_{l,|l|}} \left((q_{rs}^{i} * (t_{rs+1}^{a} - t_{rs}^{d}) * \gamma_{rs}) - \left(q_{rs}^{j \neq i} * (t_{rs+1}^{a} - t_{rs}^{d}) * \gamma_{rs} \right) * VoT$$

- Calculation of crowding multiplier γ_{rs} (Wardman & Whelan 2010):
 Based on seat capacity φ^s_r and crush capacity φ^c_r
 - Increases linearly based on corresponding multipliers γ_r^s and γ_r^c

$$\gamma_{rs} = \begin{cases} 0.95 & \text{if } q_{rs} \le 0.5 * \varphi_r^s \\ 0.95 + \left(\frac{q_{rs} - 0.5 * \varphi_r^s}{0.5 * \varphi_r^s}\right) * (\gamma_r^s - 0.95) & \text{if } 0.5 * \varphi_r^s < q_{rs} < \varphi_r^s \\ \gamma_r^s + \left(\frac{q_{rs} - \varphi_r^s}{\varphi_r^c - \varphi_r^s}\right) * (\gamma_r^c - \gamma_r^s) & \text{if } q_{rs} > \varphi_r^s \end{cases}$$

Results

Conclusions

Operator disruption costs

Introduction

Methodology

Case study

Results

Conclusions

Long-term loss of ridership Δq (Van Oort et al. 2015):

- Approach based on simple generalized cost elasticity E_d
- Weighted average generalized costs \bar{t}^{pi} between disrupted time t^i and undisrupted time $T t^i$

$$\Delta q = \left(E_d * \left(\frac{\bar{t}^{pi} * t^i + \left(\bar{t}^{pj \neq i} * \left(T - t^i\right)\right)}{\bar{t}^{pj \neq i} * T} - 1\right) + 1\right) * \sum_{s_i \in S_i} \sum_{s_j \in S_i} q_{s_i, s_j}$$

• Components operator costs
$$c_o^1$$
:
• Revenue loss: $\beta_2 * \Delta q$

- Personnel overtime hours costs: $\beta_3 * t$
- Fine too early, too late and cancelled trips:

 $\beta_4 * \sum_{r \in R} r^e + \beta_5 * \sum_{r \in R} r^l + \beta_6 * \sum_{r \in R} r^c$

• Fine infrastructure unavailability: $\beta_7 * t^i$

Case study: disruption

Introduction

Methodology

Case study

Results

Conclusions

• Case study: urban PT network The Hague, the Netherlands

- Switch failure light rail at Laan van NOI station:
 - 11:22 11:26: activation rescheduling procedure
 - 11:26 14:33: active rescheduling procedure during disruption
 - 14:33 19:38: service recovery after disruption resolved

Case study: driver schedules

Introduction

Methodology

Case study

Results

Conclusions

Scenario 1: multi-line multi-vehicle driver schedule:

- Schedule-based rescheduling
- Situation as currently applied by PT operator
- Empirical quantification based on (fusion of) AFC + AVL data
- Scenario 2: single-line multi-vehicle driver schedule:
 Headway-based rescheduling: no risk on delay propagation
 Shorter recovery time → reduction disruption costs + overtime
 Quantification based on equal hourly vehicle distribution
 - Same irregularity (PRDM) as during undisrupted case
 - Passenger load equally divided by *perceived* frequency
- Extrapolation to yearly costs based on disruption log-data

Results: costs per disruption

Introduction

Methodology

Case study

Results

Conclusions

Monetised costs per disruption (€):

- Scenario 1: €29k (operator) + €36k (pax) = €65k (€1.1M yearly)
- Scenario 2: €17k (operator) + €19k (pax) = €36k (€0.6M yearly)
- Total disruption costs decrease by 45% in scenario 2

Results: cost-benefit analysis

Introduction

Methodology

Case study

Results

Conclusions

- Monetised trade-off between disruption costs and driver schedule costs:
 - Implementation of single-line multi-vehicle schedule + regularity
 - Driver schedule costs increase by €300k
 - Operator costs during disruptions decrease by €200k
 - Societal costs (operator + passenger) decrease by €500k

Cost-Benefit Analysis Scenario 2 compared to Scenario 1

Discussion and conclusions

Introduction

Methodology

Case study

Results

Conclusions

- Benefits of complex driver schedule are overestimated if increased disruption costs are not considered:
 - o Initial cost reduction of €300k
 - o However: €200k costs / revenue loss
 - However: €500k total societal costs
- Role PT authority to bridge gap financial vs. societal costs?
- Further research (based on sensitivity analysis) :
 - More detailed study to service recovery time reduction
 - More detailed study to long-term demand elasticity value

Driver schedule efficiency vs. public transport robustness:

A framework to quantify this trade-off based on passive data

Ir. Menno Yap Dr. ir. Niels van Oort

M.D.Yap@TUDelft.nl

Smart Public Transport Lab <u>www.smartPTlab.TUDelft.nl</u>

July 24th, 2018

Results: sensitivity analysis

Introduction

Methodology

Case study

Results

Conclusions

TUDelft

Results: sensitivity analysis

Introduction

Methodology

500000

Case study

Results

Conclusions

