Driver schedule efficiency vs. public transport robustness:

A framework to quantify this trade-off based on passive data

Ir. Menno Yap
Dr. ir. Niels van Oort

M.D.Yap@TUDelft.nl

Smart Public Transport Lab
www.smartPTlab.TUDelft.nl

July 24th, 2018
Relevance: complex driver schedules

- Public transport driver schedules increasingly complex:
 - Driver Scheduling Problem (DSP) well-known topic in OR
 - Push for higher efficiency in PT operations
 - More advanced scheduling software (e.g. HASTUS) available

Single-line single-vehicle
Duty: 1 line, 1 vehicle

Fictitious example
Relevance: complex driver schedules

• Public transport driver schedules increasingly complex:
 o Driver Scheduling Problem (DSP) well-known topic in OR
 o Push for higher efficiency in PT operations
 o More advanced scheduling software (e.g. HASTUS) available

Fictitious example

Single-line multi-vehicle
Duty: 1 line, >1 vehicle

Driver schedule complexity
Relevance: complex driver schedules

- Public transport driver schedules increasingly complex:
 - Driver Scheduling Problem (DSP) well-known topic in OR
 - Push for higher efficiency in PT operations
 - More advanced scheduling software (e.g. HASTUS) available

Multi-line multi-vehicle
Duty: >1 line, >1 vehicle

Driver schedule complexity
Study objective

• Problem statement:
 o More complex driver schedule reduces operator costs during undisrupted situations
 o More complex driver schedule increases disruption costs
 o Impact of driver schedule on disruption costs hardly considered

• Development of framework which integrates driver schedule and PT disruption costs:
 o Quantify both components → express in same monetary units
 o Quantify PT disruption costs as function of driver schedule type
Passenger disruption costs (1)

- **In-vehicle time** Δt^{ivt}:
 - Disrupted link from stop s_l to stop s_{l+1}
 - Additional running time compared to schedule for each run r
 - Multiplied by passenger flow q_{rl}

 $$\Delta t^{ivt} = \sum_{r \in R} \left(\left(t_{rl+1}^a - \bar{t}_{rl+1}^a - (t_{rl}^d - \bar{t}_{rl}^d) \right) * q_{rl} \right) * Vot$$

- **Waiting time** Δt^{wtt}:
 - Use PRDM to express service irregularity (Van Oort & Van Nes 2009)
 - Average waiting time compared to scheduled waiting time
 - For each hour of the day h; multiplied by coefficient β_1

 $$\Delta t^{wtt} = \sum_{h \in H} \left(\left(\frac{60}{2 * f_l^h} \right) * \left(1 + (PRDM^2) \right) - \left(\frac{60}{2 * \bar{f}_l^h} \right) \right) * \beta_1 * Vot$$
Passenger disruption costs (2)

- Perceived in-vehicle time due to crowding $\Delta t^{inv,t,p}$:
 - Multiplication of realized in-vehicle time with crowding multiplier
 - Compare between disrupted case i and undisrupted case $j \neq i$

\[
\Delta t^{inv,t,p} = \sum_{r^h \in R^h} \sum_{s_l \in s_{L,l}} ((q_{rs}^i \ast (t_{rs+1}^a - t_{rs}^d) \ast \gamma_{rs}) - (q_{rs}^{j \neq i} \ast (t_{rs+1}^a - t_{rs}^d) \ast \gamma_{rs})) \ast VoT
\]

- Calculation of crowding multiplier γ_{rs} (Wardman & Whelan 2010):
 - Based on seat capacity φ_r^s and crush capacity φ_r^c
 - Increases linearly based on corresponding multipliers γ_r^s and γ_r^c

\[
\gamma_{rs} = \begin{cases}
0.95 & \text{if } q_{rs} \leq 0.5 \ast \varphi_r^s \\
0.95 + \left(\frac{q_{rs} - 0.5 \ast \varphi_r^s}{0.5 \ast \varphi_r^s}\right) \ast (\gamma_r^s - 0.95) & \text{if } 0.5 \ast \varphi_r^s < q_{rs} < \varphi_r^s \\
\gamma_r^s + \left(\frac{q_{rs} - \varphi_r^s}{\varphi_c^r - \varphi_r^s}\right) \ast (\gamma_r^c - \gamma_r^s) & \text{if } q_{rs} > \varphi_r^s
\end{cases}
\]
Operator disruption costs

- **Long-term loss of ridership** Δq (Van Oort et al. 2015):
 - Approach based on simple generalized cost elasticity E_d
 - Weighted average generalized costs \bar{t}^{pi} between disrupted time t^i and undisrupted time $T - t^i$

$$\Delta q = \left(E_d \ast \left(\frac{\bar{t}^{pi} \ast t^i + (\bar{t}^{pj\neq i} \ast (T - t^i))}{\bar{t}^{pj\neq i} \ast T} - 1 \right) + 1 \right) \ast \sum_{s_t \in S_i} \sum_{s_j \in S_j} q_{s_i,s_j}$$

- **Components operator costs** c^i_o:
 - Revenue loss: $\beta_2 \ast \Delta q$
 - Personnel overtime hours costs: $\beta_3 \ast t$
 - Fine too early, too late and cancelled trips:
 $$\beta_4 \ast \sum_{r \in R} r^e + \beta_5 \ast \sum_{r \in R} r^l + \beta_6 \ast \sum_{r \in R} r^c$$
 - Fine infrastructure unavailability: $\beta_7 \ast t^i$
Case study: disruption

- Case study: urban PT network The Hague, the Netherlands
- Switch failure light rail at Laan van NOI station:
 - 11:22 – 11:26: activation rescheduling procedure
 - 11:26 – 14:33: active rescheduling procedure during disruption
 - 14:33 – 19:38: service recovery after disruption resolved
Case study: driver schedules

- Scenario 1: multi-line multi-vehicle driver schedule:
 - Schedule-based rescheduling
 - Situation as currently applied by PT operator
 - Empirical quantification based on (fusion of) AFC + AVL data

- Scenario 2: single-line multi-vehicle driver schedule:
 - Headway-based rescheduling: no risk on delay propagation
 - Shorter recovery time \rightarrow reduction disruption costs + overtime
 - Quantification based on equal hourly vehicle distribution
 - Same irregularity (PRDM) as during undisrupted case
 - Passenger load equally divided by perceived frequency

- Extrapolation to yearly costs based on disruption log-data
Results: costs per disruption

- Monetised costs per disruption (€):
 - Scenario 1: €29k (operator) + €36k (pax) = €65k (€1.1M yearly)
 - Scenario 2: €17k (operator) + €19k (pax) = €36k (€0.6M yearly)
 - Total disruption costs decrease by 45% in scenario 2
Results: cost-benefit analysis

• Monetised trade-off between disruption costs and driver schedule costs:
 o Implementation of single-line multi-vehicle schedule + regularity
 o Driver schedule costs increase by €300k
 o Operator costs during disruptions decrease by €200k
 o Societal costs (operator + passenger) decrease by €500k
Discussion and conclusions

• Benefits of complex driver schedule are overestimated if increased disruption costs are not considered:
 o Initial cost reduction of €300k
 o However: €200k costs / revenue loss
 o However: €500k total societal costs

• Role PT authority to bridge gap financial vs. societal costs?

• Further research (based on sensitivity analysis) :
 o More detailed study to service recovery time reduction
 o More detailed study to long-term demand elasticity value
Driver schedule efficiency vs. public transport robustness:

A framework to quantify this trade-off based on passive data

Ir. Menno Yap
Dr. ir. Niels van Oort

M.D.Yap@TUDelft.nl

Smart Public Transport Lab
www.smartPTlab.TUDelft.nl

July 24th, 2018
Results: sensitivity analysis

- Results sensitive to reduction service recovery time (50%)
 - Value of 30% (-40%) reduces operator benefits scenario 2 by €100k
Results: sensitivity analysis

- Limited sensitivity to demand elasticity parameter (-0.5)
 - Value -0.3 (-40%) reduces operator benefits scenario 2 by €50k