Improving railway passengers experience, two perspectives: Travel time well saved and well spent
Door-to-door appreciation of time

Origin

Time value

High

Access mode

Transfer

Train journey

Gap of lost time

Enhance the appreciation of the travel time

Egress mode

Low

Destination

Time spent

Shorten the travel time
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Strategy*</th>
<th>Solution method (Control objective)</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abkowitz & Lepofsky (1990)</td>
<td>HC (forward hw)</td>
<td>Rule-based (Regularity)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>Chandrasekar (2002)</td>
<td>SA (forward hw) + TSP</td>
<td>Rule-based (Regularity)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>Daganzo & Pilachowski (2009)</td>
<td>HC (even hw) + SA + SS</td>
<td>Rule-based (Regularity)</td>
<td>Passenger, operator and driver</td>
</tr>
<tr>
<td>Pilachowski (2009)</td>
<td>SA (even hw)</td>
<td>Rule-based (Regularity)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>Xuan, Argote & Daganzo (2011)</td>
<td>HC (forward hw with virtual schedule)</td>
<td>Rule-based (Regularity + Punctuality)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>Batholdi III & Eisenstein (2012)</td>
<td>HC (backward hw) + SA + SS</td>
<td>Rule-based (Regularity)</td>
<td>Passenger, operator and driver</td>
</tr>
<tr>
<td>Ma, Xie & Han (2012)</td>
<td>HC + SA + TSP</td>
<td>Opt (Fuel consumption)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>van Oort, Boterman & van Nes (2012)</td>
<td>HC</td>
<td>Rule-based (Punctuality)</td>
<td>Passenger</td>
</tr>
<tr>
<td>Ampountolas & Kring (2015)</td>
<td>SA (forward hw)</td>
<td>Rule-based (Regularity)</td>
<td>Passenger and operator</td>
</tr>
<tr>
<td>Present study</td>
<td>HC + SA</td>
<td>Rule-based (Regularity)</td>
<td>Passenger, operator and driver</td>
</tr>
</tbody>
</table>

*) Note:
HC = Holding control
SA = Speed adjustment
SS = Stop-skipping
TSP = Transit Signal Priority
BL = Boarding limit
CUSTOMER WISH PYRAMID

1. Trust
 Safe and secure journey, get what you expect

2. Travel time door-to-door
 The faster the better

3. Mental effort
 No hassle, no stress

4. Physical effort
 Personal convenience

5. Emotions
 Quality time

LUST: TRAVEL RELAXED

Satisfiers

Dissatisfiers

Experience

Comfort

Ease

Speed

Reliability

Safety
Stimulus Organism Response Model

Environmental Stimuli

Emotions
- Pleasure
- Arousal
- Dominance

Approach or Avoidance Behaviour
Steering on dissatisfiers and satisfiers

- Steer on satisfiers
- Amenities
- Utility
- Steer on dissatisfiers
Three steering dimensions

Place
- Colour
- Sound
- Smell
- Design

People
- Staff
- Customers

Customer Experience

Process
- Punctuality
- Safety
- Cleanliness

Crowding

Layout
Staff
Circle of enhancement quality train journey

theoretical framework → policy → measures

measurement (questionnaire)
Rotterdam Central Station

Old situation

New situation
Rotterdam Central Station

Old situation

New situation
Results modernisation Rotterdam Central Station
Modernisation Dubbel Decker Train (VIRM1)

Old situation

New situation
Modernisation Dubbel Decker Train (VIRM1)

New situation

New situation
Results modernisation Dubbel Decker Train (VIRM1)
Conclusions

• Two approaches to improve level of service; focus on dissatisfiers and satisfiers

• Both offer added value for passenger quality (each 50%)

• But when dissatisfiers are at an acceptable level, more attention has to be paid to satisfiers

• It depends on the context what the most (cost)efficient measure is

• Travel time well saved and well spent
Questions / Contact

Mark van Hagen, mark.vanhagen@ns.nl
Niels van Oort, N.vanOort@TUDelft.nl

CASPT Brisbane, 23-25 juli, 2018