Do have a seat Predicting PT occupancy

A supervised learning approach for imbalanced data classification

Léonie Heydenrijk-Ottens, Viktoriya Degeler, Ding Luo, Niels van Oort, Hans van Lint Brisbane, July 25, 2018

Picture: DvhN/Jan Bouwman

ŤUDelft

Problem

- Smart Card Data = knowledge However
- Not *real time* available

Question How well can we predict the regular occupancy, based on historical data?

Self introduction

Background

- PhD candidate (2017-2021) • Transport and Planning, TU Delft
- Before: Data scientist consultant • CGI

•

MSc Applied Mathematics Constrained optimal control of nonlinear systems, TNO, VU University Amsterdam

Project: My TRAvel Companion

Transport Lab

Source: Luo, D., (2018). Constructing Spatiotemporal Load Profiles of Transit Vehicles with Multiple Data Sources (No. 18-02399). Acknowledgement: HTM and Stichting OpenGeo provided the AFC and AVL datasets, resp.

Method - classification

Sequential classifier

- Step 1. 'translate' dataset very under represented class versus rest (one-vs-all):
 - Class 0': not all seats occupied
 - Class 1': all seats occupied
- Step 2. Either undersample class 0' or oversample class 1'.
- Step 3. Use this data to train a model M1 to predict class 3
- Step 4. Train a model M2 to predict the 'type' of seat do not use data from class 3
- Step 5. M1 overrules M2

Classes:

- Class 0: Almost empty
- Class 1: Sit alone
- Class 2: Sit next to someone
- Class 3: All seats occupied

Method - classification

- One-versus-all sequential classifier
 - Train a model for each class in a one-vs-all way

10

- Let each model predict
- Prediction overruling: (class) 3 > 0 > 2 > 1
- Cost sensitive classification with sampling

Classes:

- Class 0: Almost empty
- Class 1: Sit alone
- Class 2: Sit next to someone
- Class 3: All seats occupied

Interpretati

13

33% of the times where all seats were occupied, model predicts: 'sit next to someone'

Results: Normal classification

Light rail: classification – no weights, no sampling								
	St	atic Featu	ires	Static+AVL Features				
Classifier	F2 score	Class 0 Recall	Class 3 Recall	F2 score	Class 0 Recall	Class 3 Recali		
Random Forest	0.80*	0.78	0.65*	0.81*	0.78*	0.66*		
Gradient Boosting	0.78	0.73	0.57	0.78	0.73	0.58		
Multilayer Perceptron	0.80*	0.76	0.60	0.80	0.77	0.66*		
K-Nearest Neighbor	0.78	0.79*	0.62	0.72	0.75	0.60		
* best in column			\smile			$ \vee $		

Results: Normal classification

16

Normalized mean confusion matrix, of RF classifier

Results: Sampling

Light rail: classification with oversampling**									
	Static Features			Static+AVL Features					
Classifier	F2 score	Class 0 Recall	Class 3 Recall	F2 score	Class 0 Recall	Class 3 Recall			
Random Forest	0.79*	0.81	0.71	0.80*	0.81	0.72			
Gradient Boosting	0.74	0.82	0.78	0.76	0.81	0.78			
Multilayer Perceptron	0.76	0.87*	0.85*	0.77	0.87*	0.86*			
K-Nearest Neighbor	0.78	0.79	0.67	0.70	0.79	0.67			
Light rail: classification with undersampling***									
Random Forest	0.76*	0.87*	0.84	0.76*	0.87*	0.85			
Gradient Boosting	0.72	0.85	0.83	0.72	0.84	0.84			
Multilayer Perceptron	0.74	0.87*	0.86*	0.75	0.87*	0.88*			
K-Nearest Neighbor	0.69	0.85	0.85	0.63	0.82	0.82			

17

*best in column

TUDelft

** SMOTE - Synthetic Minority Over-sampling Technique *** Random sampling without replacement

Results: Undersampling

Results - Sequential classification

1. Predict all seats occupied versus rest Model: Multilayer Perceptron, Sampling

19

 Predict the kind of seat (circumstances) Training: no class 3 data Model: Random Forest No sampling

Results - One-versus-all sequential classification with sampling

 Training: each class in a one-vs-all way Model: Multilayer perceptron Sampling: Yes

```
• Prediction overruling: 3 > 0 > 2 > 1
```


Results – cost sensitive classification with sampling

Lightrail: Cost sensitive classification with undersampling									
	Static Features				Static+AVL Features				
Classifier	F2 score	Class 0 Recall	Class 3 Recall	Weights	F2 score	Class 0 Recall	Class 3 Recall	Weights	
Random Forest	0.70	0.87	0.91	1,1,5,100	0.71	0.87	0.91	1,1,5,100	
Lightrail: Cost sensitive classification with oversampling									
	Static Features				Static+AVL Features				
		Static	Features			Static+A	VL Feature	es	
Classifier	F2 score	Static Class 0 Recall	Features Class 3 Recall	Weights	F2 score	Static+A Class 0 Recall	VL Feature Class 3 Recall	es Weights	
Classifier Random Forest	F2 score 0.76	Static Class 0 Recall 0.81	Features Class 3 Recall 0.83	Weights 1,1,5,100	F2 score 0.79	Static+A Class 0 Recall 0.81	VL Feature Class 3 Recall 0.81	es Weights 1,1,5,100	
Classifier Random Forest	F2 score 0.76	Static Class 0 Recall 0.81	Features Class 3 Recall 0.83	Weights 1,1,5,100	F2 score 0.79	Static+A Class 0 Recall 0.81	VL Feature Class 3 Recall 0.81	es Weights 1,1,5,100	

Results – cost sensitive classification with sampling

Conclusion

- Predicting general occupancy, using static and 'real-time' AVL data
- Tried several approaches:
 - Sampling
 - Sequential, with sampling in first step

23

One-versus-all with sampling

Cost sensitive with sampling

Relevance – Utrecht example

Future research

- Test on more data, incl. bus and tram lines
- Add 'real-time' passenger load data from 60 min. before
- Investigate: when is real time, real time enough?
- Including other real time data sources like weather

L.J.C.heydenrijk-ottens-1@tudelft.nl

- Acknowledgements:
 This research was supported by H2020 project My-TRAC (Grant No. 777640).
 HTM and Stichting OpenGeo for providing the AFC and AVL datasets, respectively.