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Problem
• Smart Card Data = knowledge

However
• Not real time available

• How well can we predict the
regular occupancy, based on 
historical data?

Question
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Self introduction

• PhD candidate (2017-2021)
Transport and Planning, TU Delft

• Before: Data scientist consultant
CGI

• MSc Applied Mathematics
Constrained optimal control of nonlinear 
systems, TNO, VU University Amsterdam

Background

Delft integrated Traffic 
& Travel Laboratory 

Smart Public 
Transport Lab

Project: My TRAvel Companion
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Predicting passenger load – Why?

• Do I have a seat? • (Especially at night) 
Are there other
people, so I feel 
save?
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Data:  Spatiotemporal Load Profiles of the Hague 
March 2015

Source: Luo, D., (2018). Constructing Spatiotemporal Load Profiles of Transit Vehicles with Multiple 
Data Sources (No. 18-02399). Acknowledgement: HTM and Stichting OpenGeo provided the AFC 
and AVL datasets, resp.
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1. Integrated daily profiles of passenger load
2. improved vehicle trajectories

1. Pata Preprocessing
2. Trip matching between GTFS and AVL
3. Matching passenger rides to vehicle Trajectories
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Passenger load – March 2015

• Passenger load, all lines • Passenger load classes
– 0: <   10% seat occupancy
– 1: <   50% seat occupancy
– 2: < 100% seat occupancy
– 3: ≥ 100% seat occupancy

23.09%

55.35%

18.31%

3.25%

75%
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Occupancy patterns

• Workday:

• Saterday/Sunday:

Legend:
• Almost empty
• Sit alone
• Sit next to someone
• All seats occupied
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Method - classification

• Classification models
– Random forest, gradient boosting, 

k-nearest neighbor, multi-layer perceptron

• Undersample majority classes
– Randomly remove majority class observations
– Helps balance the dataset
– Risk of deleting important information

• Oversample majority classes
– Synthetic Minority Over-sampling Technique (SMOTE)
– Creates synthetic observations of the minority class by:

• Finding the k-nearest-neighbors for minority class observations (finding similar 
observations)

• Randomly choosing one of the k-nearest-neighbors and using it to create a similar, 
but randomly modificated, new observation.

– No information loss
– Risk of overfitting

Load classes

Classes:
- Class 0: Almost empty
- Class 1: Sit alone
- Class 2: Sit next to someone
- Class 3: All seats occupied
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Method - classification
• Sequential classifier

– Step 1. ‘translate’ dataset - very under represented class versus rest 
(one-vs-all): 

• Class 0’: not all seats occupied
• Class 1’: all seats occupied

– Step 2. Either undersample class 0’ or oversample class 1’.
– Step 3. Use this data to train a model M1 to predict class 3
– Step 4. Train a model M2 to predict the ‘type’ of seat – do not use data 

from class 3
– Step 5. M1 overrules M2

• Classes:
– Class 0: Almost empty
– Class 1: Sit alone
– Class 2: Sit next to someone
– Class 3: All seats occupied
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Method - classification
• One-versus-all sequential classifier

– Train a model for each class in a one-vs-all way
– Let each model predict
– Prediction overruling: (class) 3 > 0 > 2 > 1

• Cost sensitive classification with sampling

• Classes:

– Class 0: Almost empty
– Class 1: Sit alone
– Class 2: Sit next to someone
– Class 3: All seats occupied
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Method - Evaluation

• K-fold Cross validation
– Randomly select whole days

• Evaluation parameters: 
– Confusion matrix
– punish false negative harder 
– I.e. avoid low recall: use F2-score False positive

False negativeTrue positive

True negative

Predicted label
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33% of the times where all
seats were occupied, 
model predicts: ‘sit next to
someone’

Interpretation
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33% of the times where all
seats were occupied, 
model predicts: ‘sit next to
someone’

Interpretation
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Features
• Day
• Line
• nth stop in sequence 
• Direction ID 
• Scheduled (GTFS) arrival time
• Scheduled (GTFS) Trip-ID
• Previous Trip-ID

• Departure Delay at previous 
stop

• Arrival Delay this stop

General 
occupancy
prediction

Real time AVL 
data 

–
Predict current

stop
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Results: Normal classification

Light rail: classification – no weights, no sampling

Static Features Static+AVL Features

Classifier F2 
score

Class 0 
Recall

Class 3 
Recall

F2 
score

Class 0 
Recall

Class 3 
Recall

Random Forest 0.80* 0.78 0.65* 0.81* 0.78* 0.66*

Gradient Boosting 0.78 0.73 0.57 0.78 0.73 0.58

Multilayer Perceptron 0.80* 0.76 0.60 0.80 0.77 0.66*

K-Nearest Neighbor 0.78 0.79* 0.62 0.72 0.75 0.60

* best in column



16

Results: Normal classification
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Results: Sampling

*best in column
** SMOTE - Synthetic Minority Over-sampling Technique
*** Random sampling without replacement

Light rail: classification with oversampling**

Static Features Static+AVL Features

Classifier F2 
score

Class 0 
Recall

Class 3 
Recall

F2 
score

Class 0 
Recall

Class 3 
Recall

Random Forest 0.79* 0.81 0.71 0.80* 0.81 0.72

Gradient Boosting 0.74 0.82 0.78 0.76 0.81 0.78

Multilayer Perceptron 0.76 0.87* 0.85* 0.77 0.87* 0.86*

K-Nearest Neighbor 0.78 0.79 0.67 0.70 0.79 0.67

Light rail: classification with undersampling***

Random Forest 0.76* 0.87* 0.84 0.76* 0.87* 0.85

Gradient Boosting 0.72 0.85 0.83 0.72 0.84 0.84

Multilayer Perceptron 0.74 0.87* 0.86* 0.75 0.87* 0.88*

K-Nearest Neighbor 0.69 0.85 0.85 0.63 0.82 0.82
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Results: Undersampling
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Results - Sequential classification

1. Predict all seats occupied versus rest 
Model: Multilayer Perceptron,  
Sampling

2. Predict the kind of seat
(circumstances)
Training: no class 3 data
Model: Random Forest
No sampling
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Results - One-versus-all sequential 
classification with sampling

• Training: each class in a one-vs-all way
Model: Multilayer perceptron
Sampling: Yes

• Prediction overruling: 3 > 0 > 2 > 1
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Results – cost sensitive classification
with sampling

Lightrail: Cost sensitive classification with under sampling

Static Features Static+AVL Features

Classifier F2 
score

Class 0
Recall

Class 3 
Recall Weights F2 

score
Class 0 
Recall

Class 3 
Recall Weights

Random Forest 0.70 0.87 0.91 1,1,5,100 0.71 0.87 0.91 1,1,5,100

Lightrail: Cost sensitive classification with overs ampling 

Static Features Static+AVL Features

Classifier F2 
score

Class 0
Recall

Class 3 
Recall Weights F2 

score
Class 0 
Recall

Class 3 
Recall Weights

Random Forest 0.76 0.81 0.83 1,1,5,100 0.79 0.81 0.81 1,1,5,100
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Results – cost sensitive classification
with sampling

Undersampling Oversampling
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Conclusion

• Predicting general occupancy, using
static and ‘real-time’ AVL data

• Tried several approaches:
• Sampling
• Sequential, with sampling in first step
• One-versus-all with sampling
• Cost sensitive with sampling
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Relevance – Utrecht example
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Future research

• Test on more data, incl. bus and tram lines
• Add ‘real-time’ passenger load data from 60 

min. before
• Investigate: when is real time, real time 

enough?
• Including other real time data sources like 

weather
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Questions ?
L.J.C.heydenrijk-ottens-1@tudelft.nl
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