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Introduction (1)

« Public transport hubs have a central role in the network

* Public transport hub characteristics (analogy airports):
0 High connectivity (Pels, 2001)
0 Network centrality (Shaw 1993, Lohmann et al. 2009)
o0 Limited number of hubs in network (Alderighi et al. 2005)
0

Concentration of different OD-passenger flows in time and
space transferring via hub (Burghouwt, 2007)

* Hubs important in relation to passenger reliability
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Introduction (2)

* Public transport reliability measures: from venhicle-
based to passenger-based metrics

0 Punctuality
0 Regularity

« Passenger-oriented reliability measures: from trip to
journey level; use of passive data sources

o0 Additional passenger waiting time per line
0 Journey excess time

« Despite importance of hubs in affecting passenger
reliability, no measures focusing specifically on hub
reliability
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Research goal

« Development of measures to quantify and compare hub
reliability from a passenger perspective
0 Based on passive data sources
o0 General applicable, independent of the case study network

* Research consists of three steps:

0 Infer spatial characteristics of potential hubs: which stops form
a coherent cluster of transfer stops

0 Hub identification: which cluster of transfer stops concentrate
substantial transfer flows in the network

o0 Hub reliability: quantify and compare reliability of identified
hubs

« Focus on urban public transport hubs only
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Case study: network

« The Hague metropolitan area: ~800.000 inhabitants
o 2 light rail lines, 10 urban tram lines, 8 urban bus lines
0 500 urban public transport stops (1650 Stop IDs), 8 train stations
0 =250.000 journeys per average working day (light rail + tram + bus)
0 80% of these journeys by light rail / tram, 20% by bus
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Case study: passive data sources

« Automated Fare Collection (AFC) data: entry-exit system

stop-ID Ilne time stop-ID ID ID

| 4-3-2014 11:42:37 [EEENL] 4-3-2014 12:03:19 34997 3423 3050 81675688
4- 3 2014 12:15:57 30091 18 4-3-2014 12:23:04 32857 6545 187 81675688

« Automated Vehicle Location (AVL ) data

dep

1119 4464 28 19:22:35 2016-01-06 19:23:25 19:22:35 2016-01-06 19:23:49
1119 4465 28 18:23:48 2016-01-06 18:26:26 18:23:48 2016-01-06 18:26:44

» Infer vehicle occupancy by integrating AFC+AVL data

« Stop data

| Stop-ID____| RD x-coordinate | RD y-coordinate | Passenger stopname |
EEEEI 81962 450867 Dr. H. Colijnlaan
EEF 82188 455213 Central Station
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Data processing: destination inf.

« Data cleaning (0.05 — 0.5% of daily transactions)
0 Delete system error transactions / unrealistic CoTime / missing trip ID

« Missing check-outs (1.4%): destination inference (Trépanier)
o Ifm>1andj # m, alighting location of j is closest to sg(jﬂ)k.
o Ifm>1andj = m, alighting location of j is closest to s{,’(jﬂ)k.
o If m =1, trip chaining is not possible: remove from dataset

Aaw
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Data processing: transfer inference

- State-of-the-practice: ty,;+1)x < fapjx + temax (€.9- 35 min)

« State-of-the-art: alighting + boarding is transfer if:
0 Ilpj+k # lpjx 2 what in case of short-turning, deadheading?
o If first vehicle run r,;.1)x is taken after alighting - denied boarding?
0 d(spijr1r Spik) < dwane > Use intermediate PT on other network

level?

* Improved transfer inference algorithm: transfer if:
0 Lyg+nk # lpjk OF L+ = lpjk if first run after alighting 3, is taken
o If first vehicle run r,;11)k Is taken after alighting where q;,- < capacity
o If first vehicle run is taken given intermediate level AVL data, d > d,, 4%
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Spatial demarcation of potential hubs (1)

* Cluster transfer stops which form a coherent set of stops
between which passenger transfer flows occur

» Clusters of transfer stops form potential hubs

« Determining clustering technique

Technique | K-means/ Hierarchical DBSCAN
Characteristics K-medoid | agglomerative cIusterlng

Pre-defined k Pre-defined Not pre-defined

Complete / partial Complete Complete _
Exclusive / overlap Exclusive Exclusive _

>  DBSCAN clustering technique applied
TUDelft 9




Spatial demarcation of potential hubs (2)

« Determination of distance measure DBSCAN:
0 Not distance based, but passenger-oriented: transfer flow based
o F(i,j) =F(,j)+ F(,i) = F(j,i) = F(i,j) 2 symmetric distance mat
0 F(i,j) = max(F) — F(i,j) = inversed, non-negative distance matrix

» Determination of DBSCAN parameters:

o The neighborhood of a given radius Eps contains at least MinPoint
0 MinPoint: context-derived. Hub min. 2 Stop IDs & MinPts =1
0 Eps: experiment values to check external validity - Eps = max(F)-100
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Spatial demarcation of potential hubs (3)

* Resulting stops clustered by DBSCAN algorithm:
0 From 1650 StoplDs - transfers occurred between 910 StoplDs
0 694 (76%) of these StoplDs is not clustered - ‘noise’
0 Remaining 216 (24%) StoplIDs clustered in 62 clusters

Histogram cluster size distribution
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* Resulting transfer flows clustered by DBSCAN algorithm:
0 Maximize within-cluster transfer flows / minimize between-cluster flows
0 86% of all network transfer flows: within-cluster transfer flows

-i-;u Delft 0 98% of transfer flows from/to clustered StopIDs: wiithin-cluster flows
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Hub identification (1)

« From 62 clusters of potential hubs: which clusters
concentrate substantial transfer flows to be considered a

hub

* Analogy airline industry to apply economic metrics (Costa et
al. 2010; Rodriguez-Deniz et al. 2013)

0 Use Herfindahl-Hirschman Index (HHI) to calculate market
concentration based on market share of cluster i P;:

HHI =Y!_, P;?
o Number of ‘effective’ market players (= hubs) n, = HHI ™1

* Results case study network:
0 HHI = 0.0889, n, = 11.3 & 11 hubs identified from 62 clusters
of potential hubs
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Hub
Identification

(2)
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Cluster ID Hub name
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Hub reliability (1)

* Hub-level passenger-oriented reliability indicators:

0 % transferring passengers missing their connection Q,,,. at hub s,
L VR

ch - L OR
Zl r qt,rll—rlz

V Shub € Shub

0 Perceived journey excess time to due to lost connection at hub
Z% 25 qul—rlz * Mqull_le * (Ta _ TS)

LN'R

PJET. = V Shub € Shub

0 Societal unreliability costs due to lost connection at the hub

L R
Cme = Zl Z Qryy—rp5 * MCqur”lz * (Ta - TS) *VoT VY spup € Shup
r

lif r >

5 |
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Hub reliability (2)

« Example hub reliability quantification: hub Leyweg

* Average: 5.3% lost connections with on average 12 minutes
additional perceived journey travel time --> yearly societal
costs = €18.000

Arriving Departing Lost transfer Total transfer Q.. PJET,,. Conc
line line flow flow (%) (min) (€ / year)
21 23 16 318 5% 13 1450
21 25 6 269 2% 3 146
23 21 26 477 5% 15 2664
23 25 108 1344 8% 10 7784
25 21 16 441 4% 18 1415
25 23 46 1253 4% 15 4136
Total 218 4102 5.3% 12.3 €18.000
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Hub reliabllity (3)

Yearly societal costs due to hub unreliability at all hubs

(accounting for 86% of all transfers) for case study network:

€386.000
Qmc PJET Cinc

Cluster ID Hub name (%) (min) (€ / year)
2 Central Station 3.6% 13.3min €114.000
4 Station Hollands Spoor 52% 11.9min € 84.000
1 Centrum / Spui / Kalvermarkt 5.1% 12.1 min € 80.000
40 Leyenburg 3.6% 12.9 min € 23.000
41 Leyweg 53% 123 min € 18.000
50 Herenstraat 55% 12.1min €15.000
35 The Hague Market 3.1% 13.7min € 15.000
61 Leidschenveen 2.1% 243 min €11.000
28 Laan van NOI 43% 10.7min  €10.000
32 Brouwersgracht 2.2% 12.8 min € 8.900
36 Wouwermanstraat 1.1% 14.0 min €6.700
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Conclusions & further research

» Conclusions:
o Generic, data-driven methodology developed
o To identify urban public transport network hubs
o To quantify and compare hub (un)reliability
0 To express hub unreliability in monetary terms - SCBA

* Further research:

0 Incorporate hub connectivity / complexity explicitly in hub
identification

0 Incorporate perceived in-vehicle time due to crowding as
consequences of hub unreliability in PJET,,. and C,,,

0 Incorporate hub unreliability in explaining passenger route
choice
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