A data-driven approach to infer spatial characteristics and service reliability of public transport hubs

Ir. Menno Yap Dr. ir. Niels van Oort Dr. Oded Cats Prof. dr. ir. Serge Hoogendoorn

<u>M.D.Yap@TUDelft.nl</u> <u>https://nielsvanoort.weblog.tudelft.nl/</u>

TUDelft

May 22nd, 2017

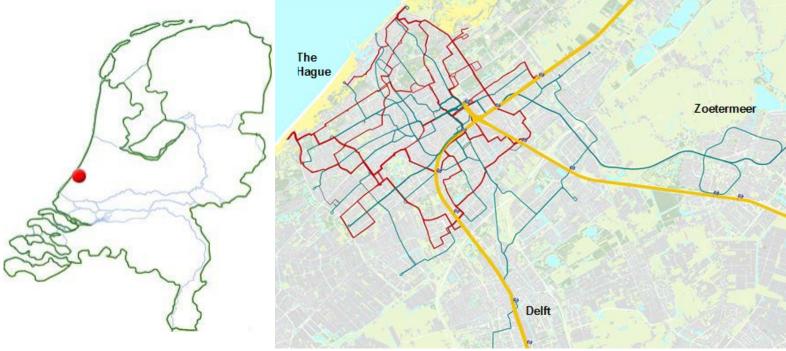
Introduction (1)

- Public transport hubs have a central role in the network
- Public transport hub characteristics (analogy airports):
 - High connectivity (Pels, 2001)
 - Network centrality (Shaw 1993, Lohmann et al. 2009)
 - Limited number of hubs in network (Alderighi et al. 2005)
 - Concentration of different OD-passenger flows in time and space transferring via hub (*Burghouwt, 2007*)
- Hubs important in relation to passenger reliability

Introduction (2)

- Public transport reliability measures: from vehiclebased to passenger-based metrics
 - o Punctuality
 - Regularity
- Passenger-oriented reliability measures: from trip to journey level; use of passive data sources
 - Additional passenger waiting time per line
 - Journey excess time
- Despite importance of hubs in affecting passenger reliability, no measures focusing specifically on hub reliability

Research goal


- Development of measures to quantify and compare hub reliability from a passenger perspective
 - Based on passive data sources
 - General applicable, independent of the case study network
- Research consists of three steps:
 - Infer spatial characteristics of potential hubs: which stops form a coherent cluster of transfer stops
 - Hub identification: which cluster of transfer stops concentrate substantial transfer flows in the network
 - Hub reliability: quantify and compare reliability of identified hubs
 - Focus on urban public transport hubs only

Case study: network

- The Hague metropolitan area: \approx 800.000 inhabitants
 - o 2 light rail lines, 10 urban tram lines, 8 urban bus lines
 - 500 urban public transport stops (1650 Stop IDs), 8 train stations
 - ≈250.000 journeys per average working day (light rail + tram + bus)
 - o 80% of these journeys by light rail / tram, 20% by bus

Case study: passive data sources

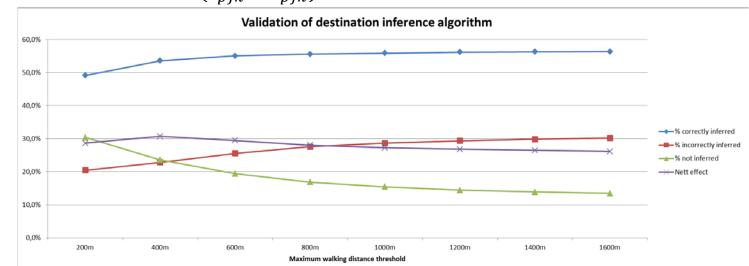
• Automated Fare Collection (AFC) data: entry-exit system

Tap-in date + time	Tap-in stop-ID	Tap-in line	Tap-out date + time	Tap-out stop-ID	Trip- ID	Vehicle ID	Smart-card ID
4-3-2014 11:42:37	35309	6	4-3-2014 12:03:19	34997	3423	3050	81675688
4-3-2014 12:15:57	30091	18	4-3-2014 12:23:04	32857	6545	187	81675688

• Automated Vehicle Location (AVL) data

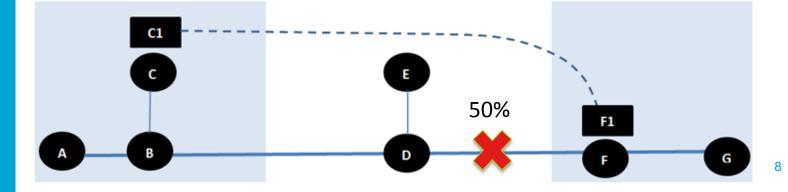
Stop-ID	Trip-ID	Order-nr	Nominal arr	Realized arr	Nominal dep	Realized dep
1119	4464	28	19:22:35	2016-01-06 19:23:25	19:22:35	2016-01-06 19:23:49
1119	4465	28	18:23:48	2016-01-06 18:26:26	18:23:48	2016-01-06 18:26:44

- Infer vehicle occupancy by integrating AFC+AVL data
- Stop data


Stop-ID	RD x-coordinate	RD y-coordinate	Passenger stop name
35309	81962	450867	Dr. H. Colijnlaan
30091	82188	455213	Central Station

For this study: data used of 1 week (Nov 23 – Nov 27 2015)

Data processing: destination inf.


- Data cleaning (0.05 0.5% of daily transactions)
 - Delete system error transactions / unrealistic CoTime / missing trip ID
- Missing check-outs (1.4%): destination inference (Trépanier)
 - If m > 1 and $j \neq m$, alighting location of j is closest to $s_{p(j+1)k}^{b}$.
 - If m > 1 and j = m, alighting location of j is closest to $s_{p(j=1)k}^{b}$.
 - If m = 1, trip chaining is not possible: remove from dataset

$d_{walk} = argmax(\hat{s}_{pjk}^{a,c} - \hat{s}_{pjk}^{a,w}), d_{walk}\{d_{200}, d_{400}, d_{1600}\}$: 400 Euclidean meter

Data processing: transfer inference

- State-of-the-practice: $t_{dp(j+1)k} \leq \widetilde{t_{apjk}} + t_{t,max}$ (e.g. 35 min)
- State-of-the-art: alighting + boarding is transfer if:
 - $l_{p(j+1)k} \neq l_{pjk} \rightarrow$ what in case of short-turning, deadheading?
 - If first vehicle run $r_{lp(j+1)k}$ is taken after alighting \rightarrow denied boarding?
 - $d(s_{p(j+1)k}^{b}, s_{pjk}^{a}) \le d_{walk} \rightarrow$ use intermediate PT on other network level?
- Improved transfer inference algorithm: transfer if:
 - $l_{p(j+1)k} \neq l_{pjk}$ or $l_{p(j+1)k} = l_{pjk}$ if first run after alighting r_{lpjk} is taken
 - If first vehicle run $r_{lp(j+1)k}$ is taken after alighting where $q_{lr} < capacity$
 - If first vehicle run is taken given intermediate level AVL data, $d > d_{walk}$

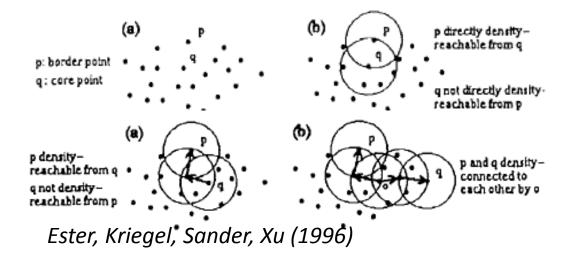
ŤUDelft

Spatial demarcation of potential hubs (1)

- Cluster transfer stops which form a coherent set of stops between which passenger transfer flows occur
- Clusters of transfer stops form potential hubs
- Determining clustering technique

Technique Characteristics	K-means/ K-medoid	Hierarchical agglomerative clustering	DBSCAN
Pre-defined k	Pre-defined	Not pre-defined	Not pre-defined
Complete / partial	Complete	Complete	Partial
Exclusive / overlap	Exclusive	Exclusive	Overlap

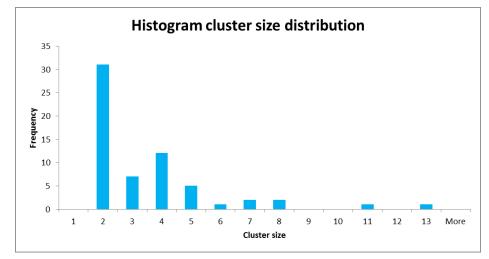
DBSCAN clustering technique applied


9

Spatial demarcation of potential hubs (2)

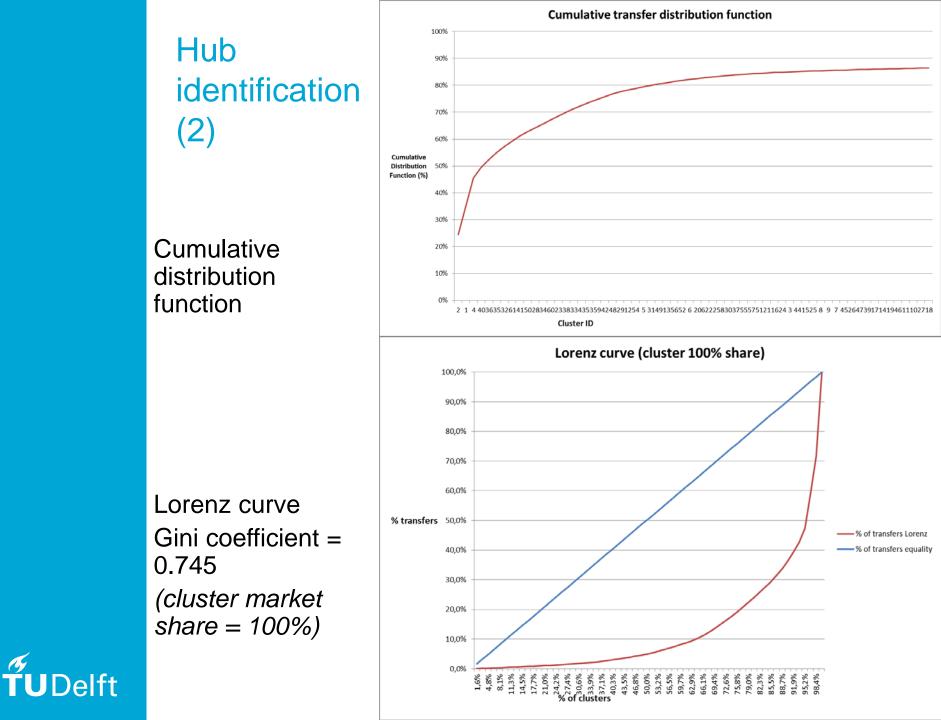
- Determination of distance measure DBSCAN:
 - Not distance based, but passenger-oriented: transfer flow based
 - $F(i,j) = F(i,j) + F(j,i) \rightarrow F(j,i) = F(i,j) \rightarrow$ symmetric distance mat
 - $F(i,j) = \max(F) F(i,j) \rightarrow$ inversed, non-negative distance matrix

• Determination of DBSCAN parameters:

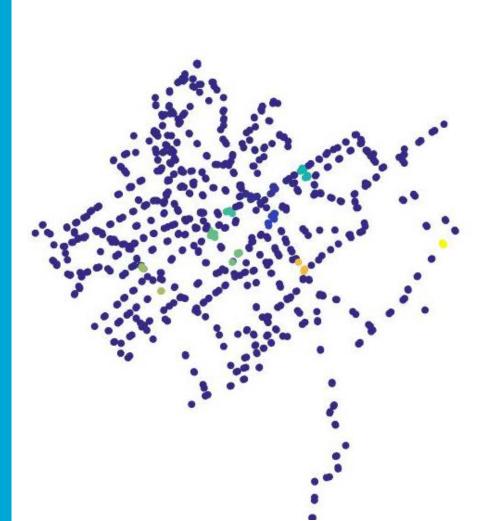

- The neighborhood of a given radius *Eps* contains at least *MinPoint*
 - *MinPoint*: context-derived. Hub min. 2 Stop IDs \rightarrow *MinPts* = 1
 - *Eps:* experiment values to check external validity \rightarrow *Eps* = *max(F)-100*

Spatial demarcation of potential hubs (3)

- Resulting stops clustered by DBSCAN algorithm:
 - From 1650 StopIDs \rightarrow transfers occurred between 910 StopIDs
 - 694 (76%) of these StopIDs is not clustered \rightarrow 'noise' 0
 - Remaining 216 (24%) StopIDs clustered in 62 clusters

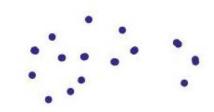

- Resulting transfer flows clustered by DBSCAN algorithm:
 - Maximize within-cluster transfer flows / minimize between-cluster flows
 - 86% of all network transfer flows: within-cluster transfer flows
 - 98% of transfer flows from/to clustered StopIDs: wiithin-cluster flows 11

Hub identification (1)


- From 62 clusters of potential hubs: which clusters concentrate substantial transfer flows to be considered a hub
- Analogy airline industry to apply economic metrics (Costa et al. 2010; Rodriguez-Deniz et al. 2013)
 - Use Herfindahl-Hirschman Index (HHI) to calculate market concentration based on market share of cluster $i P_i$:

 $HHI = \sum_{i=1}^{I} P_i^{2}$

- Number of 'effective' market players (= hubs) $n_e = HHI^{-1}$
- Results case study network:
 - HHI = 0.0889, $n_e = 11.3 \rightarrow 11$ hubs identified from 62 clusters of potential hubs


Hub identification (3)

ŤUDelft

Cluster ID Hub name

- 1 Centrum / Spui / Kalvermarkt
- 2 Central Station
- 4 Station Hollands Spoor
- 28 Laan van NOI
- 32 Brouwersgracht
- 35 The Hague Market
- 36 Wouwermanstraat
- 40 Leyenburg
- 41 Leyweg
- 50 Herenstraat
- 61 Leidschenveen

Hub reliability (1)

- Hub-level passenger-oriented reliability indicators:
 - % transferring passengers missing their connection Q_{mc} at hub s_{hub} $Q_{mc} = \frac{\sum_{l}^{L} \sum_{r}^{R} q_{r_{l1}-r_{l2}} * MC_{q_{r_{l1}-r_{l2}}}}{\sum_{l}^{L} \sum_{r}^{R} q_{t,r_{l1}-r_{l2}}} \quad \forall s_{hub} \in S_{hub}$
 - Perceived journey excess time to due to lost connection at hub $PJET_{mc} = \frac{\sum_{l}^{L} \sum_{r}^{R} q_{r_{l1}-r_{l2}} * MC_{q_{r_{l1}-r_{l2}}} * (T^{a} - T^{s})}{\sum_{l}^{L} \sum_{r}^{R} q_{r_{l1}-r_{l2}} * MC_{q_{r_{l1}-r_{l2}}}} \quad \forall s_{hub} \in S_{hub}$
 - Societal unreliability costs due to lost connection at the hub $C_{mc} = \sum_{l}^{L} \sum_{r}^{R} q_{r_{l1}-r_{l2}} * MC_{q_{r_{l1}-r_{l2}}} * (T^{a} - T^{s}) * VoT \quad \forall s_{hub} \in S_{hub}$

with MC
$$\begin{cases} 1 \ if \ r_{l2}^{a} > r_{l2}^{s} \\ 0 \ if \ r_{l2}^{a} \le r_{l2}^{s} \end{cases}$$

ŤUDelft

Hub reliability (2)

- Example hub reliability quantification: hub Leyweg
- Average: 5.3% lost connections with on average 12 minutes additional perceived journey travel time --> yearly societal costs ≈ €18.000

Arriving line	Departing line	Lost transfer flow	Total transfer flow	Q _{mc} (%)	PJET _{mc} (min)	C _{mc} (€ / year)
21	23	16	318	5%	13	1450
21	25	6	269	2%	3	146
23	21	26	477	5%	15	2664
23	25	108	1344	8%	10	7784
25	21	16	441	4%	18	1415
25	23	46	1253	4%	15	4136
Total		218	4102	5.3%	12.3	€18.000

Hub reliability (3)

 Yearly societal costs due to hub unreliability at all hubs (accounting for 86% of all transfers) for case study network: €386.000

Cluster ID	Hub name	Q _{mc} (%)	PJET _{mc} (min)	C _{mc} (€ / year)
2	Central Station	3.6%	13.3 min	€ 114.000
4	Station Hollands Spoor	5.2%	11.9 min	€ 84.000
1	Centrum / Spui / Kalvermarkt	5.1%	12.1 min	€ 80.000
40	Leyenburg	3.6%	12.9 min	€ 23.000
41	Leyweg	5.3%	12.3 min	€ 18.000
50	Herenstraat	5.5%	12.1 min	€ 15.000
35	The Hague Market	3.1%	13.7 min	€ 15.000
61	Leidschenveen	2.1%	24.3 min	€ 11.000
28	Laan van NOI	4.3%	10.7 min	€ 10.000
32	Brouwersgracht	2.2%	12.8 min	€ 8.900
36	Wouwermanstraat	1.1%	14.0 min	€ 6.700

Conclusions & further research

- Conclusions:
 - Generic, data-driven methodology developed
 - To identify urban public transport network hubs
 - To quantify and compare hub (un)reliability
 - To express hub unreliability in monetary terms \rightarrow SCBA
- Further research:
 - Incorporate hub connectivity / complexity explicitly in hub identification
 - Incorporate perceived in-vehicle time due to crowding as consequences of hub unreliability in $PJET_{mc}$ and C_{mc}
 - Incorporate hub unreliability in explaining passenger route choice

A data-driven approach to infer spatial characteristics and service reliability of public transport hubs

Ir. Menno Yap Dr. ir. Niels van Oort Dr. Oded Cats Prof. dr. ir. Serge Hoogendoorn

<u>M.D.Yap@TUDelft.nl</u> <u>https://nielsvanoort.weblog.tudelft.nl/</u>

TUDelft

May 22nd, 2017