Posts tagged revealed preference

Improving predictions of the impact of disturbances on public transport usage based on smart card data

The availability of smart card data from public transport travelling the last decades allows analyzing current and predicting future public transport usage. Public transport models are commonly applied to predict ridership due to structural network changes, using a calibrated parameter set. Predicting the impact of planned disturbances, like temporary track closures, on public transport ridership is however an unexplored area. In the Netherlands, this area becomes increasingly important, given the many track closures operators are confronted with the last and upcoming years. We investigated the passenger impact of four planned disturbances on the public transport network of Den Haag, the Netherlands, by comparing predicted and realized public transport ridership using smart card data. A two-step search procedure is applied to find a parameter set resulting in higher prediction accuracy. We found that in-vehicle time in rail-replacing bus services is perceived ≈1.1 times more negatively compared to in-vehicle time perception in the initial tram line. Besides, passengers do not seem to perceive the theoretical benefit of the usually higher frequency of rail-replacement bus services compared to the frequency of the replaced tram line. At last, no higher waiting time perception for temporary rail-replacement services could be found, compared to regular tram and bus services. The new parameter set leads to substantially higher prediction accuracy compared to the default parameter set. It supports public transport operators to better predict the required supply of rail-replacement services and to predict the impact on their revenues.

Read our TRB paper HERE

Find the poster HERE

© 2011 TU Delft