Posts tagged crowding

Insights into door-to-door travel patterns of public transport passengers

Public transport enables fast and reliable station to station journeys. To assess passenger travel patterns and to infer actual quality of service, smartcard and AVL data offer great opportunities. There is, however, an increasing interest in insights into access and egress dynamics of public transport riders as well. What is the size of a stop’s catchment area, which modes are used, and how long and reliable are access and egress times? The answers to these and other questions enable optimization of the total mobility system, thereby also increasing public transport ridership and efficiency. Sufficient biking access of public transport stops (routes and parking), for instance, offer opportunities to increase public transport stopping distances, thereby increasing operational speed and reliability, without compromising accessibility of service areas. We developed a methodology to calculate and demonstrate these dynamics by using new and existing data technologies, namely AVL, survey and new promising app.

Find the Transit Data Conference abstract HERE and our presentation HERE

Optimization of a passenger railway transportation plan considering mobility flows and service quality

This research focuses on designing transportation plan for SNCF Transilien (French railway
operator for the Parisian suburban mass transit). The objective is to develop methods
and decision support tools to propose a timetable adapted to the passenger demand in the
Parisian mass transit system, including comfort and reliability criterias.
This paper aims to present the first step of this research. We propose a graph theoretic
ILP formulation for the Line Planning Problem, minimizing both travelers travel time and
operating cost. We furthermore develop a multi-objective method to solve this problem.
This method offers a pool of solutions in order to let the final designer choose the solution.
We report computational results on real world instances provided from SNCF Transilien.

Check the RAIL Lille paper of Lucile Brethome et al. HERE

Inzichten in dynamische effecten van openbaar vervoer door combinatie van statische en dynamische OV modellen

Steden worden steeds populairder om te wonen, werken en te recreëren. Deze trek naar de stad legt steeds meer druk op de hoogwaardige OV-assen in en van/naar de stad. Naast snelheid en frequentie zijn betrouwbaarheid en drukte belangrijke kwaliteitsaspecten voor zowel reiziger als vervoerder. Om deze OV-assen hoogwaardig en efficiënt te kunnen (blijven) exploiteren zijn inzichten in te verwachte effecten van nieuwe ontwikkelingen en maatregelen essentieel. Afgelopen decennium zijn er grote stappen gezet op het gebied van OV modellering. Er zijn goede, statische modellen beschikbaar voor OV prognoses. Desondanks is voor beter inzicht in bijvoorbeeld toekomstige betrouwbaarheid en drukte behoefte aan een meer dynamische modelomgeving, zonder het hoge detailniveau van microsimulatie. TU Delft en Goudappel zijn daarom een verkenning gestart naar toepassing van dynamische OV toedelingsmodellen, (agent-based, mesoscopisch). De basis hiervoor, BusMezzo, is ontwikkeld door KTH Stockholm en wordt daarnaast ook al via TU Delft toegepast in Nederlandse studies.

Deze verkenning richt zich op het modelleren van openbaar vervoer met zowel OmniTRANS, de modelleringsoftware voor het gros van de regionale en stedelijke modellen in Nederland, als BusMezzo, een dynamisch simulatiemodel voor OV toedeling. Het doel van dit project is om te verkennen in hoeverre een dynamisch model waarde kan toevoegen ten opzichte van een statisch model, en welke stappen genomen moeten worden om deze modellen met elkaar te laten communiceren. Naast theoretische analyse is een case studie van de metro van Amsterdam uitgevoerd.

BusMezzo is in staat om elk voertuig en elke reiziger individueel te simuleren en kan daarmee de volledige interactie tussen reiziger en voertuig meenemen in de toedeling. De impact van crowding wordt volledig gemodelleerd, door het toepassen van volume-afhankelijke halteertijden, denied boarding, en door reizigers ervaren reistijd als gevolg van discomfort in drukke voertuigen. Hiermee ontstaat een verrijking ten opzichte van statische modellen.

Een wederzijdse uitwisseling van input en output data tussen de beide modellen is mogelijk. Het ligt voor de hand om een tweetrapsraket te maken van beide modellen, waarbij de kracht van beiden wordt gecombineerd. Hiermee kunnen meer en betere inzichten worden verkregen voor verwachte effecten van ontwikkelingen en/of OV maatregelen. Daarmee wordt een grote verbeterslag in prognoses en bijv. kostenbaten-analyses gemaakt.

Bekijk de Platos presentatie HIER

Innovatieve toepassingen van OV chipkaartdata

Er wordt veel gesproken over nieuwe databronnen die helpen bij de uitdagingen in de OV wereld. De OV chipkaart is één van de bronnen, waarmee we het OV beter en efficiënter kunnen maken. Maar tot nog toe gebruikten we deze data vooral ter vervanging van eerdere handmatig verkregen data. In dit paper gaan we een stap verder. Aan de hand van drie innovatieve cases laten we zien dat er veel meer met deze data te doen is.

Met OV chipkaart data stelden wij een OV-model op voor Den Haag voor korte termijn prognoses. Dit is de basis geweest voor de drie cases:

De vraag voor eerste case was: zijn elasticiteits¬parameters af te leiden uit revealed preference data voor verschillende praktijksituaties? Wij merken dat dit goed mogelijk is. En dat het gedrag van reizigers verschilt per context: reizigers reageren heftiger op ‘tijdelijk ongemak’ dan in een vergelijkbare structurele situatie. De elasticiteitsparameter kan tot 25% hoger liggen.

Ook kijken wij naar een belangrijk, maar vaak in modellen genegeerd aspect van reisbeleving: comfort. Voor de regio Den Haag nemen wij expliciet comfort op in de (model) kostenfunctie door rekening te houden met de capaciteit van voertuigen. De bestaande vraag leiden wij direct af uit OV chipkaartgegevens. Onze studieresultaten tonen aan dat het niet beschouwen van capaciteit en comfort kan leiden tot een onderschatting van de vervoerwaarde-effecten tot 30%. We laten ook zien dat deze aanpak kan worden toegepast in de praktijk: de rekentijd is kort en het leidt tot een betere vraagraming van openbaar vervoer.

Tot slot kijken we naar de bruikbaarheid en inzet van andere databronnen. Als pilot hebben we een vergelijkende analyse tussen OV chipkaart- en GSM data uitgevoerd voor de regio Emmen. We tonen aan dat de GSM data aanvullend is: deze is namelijk ook bruikbaar voor analyse van de niet-ov-reizigers. Tot slot laten we zien dat het combineren van de twee databronnen inzicht verschaft in de potentie voor OV op specifieke HB relaties. Zo benoemen wij een aantal relaties in de regio Emmen waar op basis van de data het OV gebruik (vooralsnog) achter blijft en dus potentie heeft.

Alle drie de cases laten innovatie zien op onderzoek en toepassing van OV chipkaartdata. Wij gaan door met deze innovaties voor een beter en efficiënter OV!

Lees hier onze paper: CVS2015: Innovatie met chipkaartdata

De presentatie vind je HIER

Kosten en baten van robuustheid en comfort in OV modellen

Verstoringen in het openbaar vervoer hebben een grote impact op reizigers. Zowel reizigers, overheden als politiek hechten daarom veel belang aan robuust openbaar vervoer. Ondanks dit belang was tot nu toe niet bekend wat de (maatschappelijke) kosten van verstoringen in het OV zijn. Bij mogelijke maatregelen ter verbetering van OV robuustheid zijn vaak alleen de kosten bekend, terwijl de maatschappelijke robuustheidsbaten ervan tot op heden onbekend waren.
Wij hebben een methodologie ontwikkeld waarmee we, ondersteund door OV verkeersmodellen, de maatschappelijke kosten van onrobuust OV, en de maatschappelijke baten van robuustheids–maatregelen, kunnen kwantificeren. Wij bekijken OV robuustheid vanuit een reizigersperspectief. Tot op heden wordt robuustheid door wetenschap en praktijk vaak per vervoerder, of per netwerkniveau, benaderd. Wij richten ons echter op robuustheid van multi-level OV netwerken, waarbij we alle OV netwerkniveaus, alle OV modaliteiten van alle vervoerders integraal analyseren. Door simulatie van verstoringen in een multi-level OV model kunnen we in kaart brengen in hoeverre het totale OV netwerk in staat is om, vanuit de reiziger bezien, een verstoring op een bepaald netwerkniveau op te vangen.
Een belangrijk aspect bij grote verstoringen in het OV is het gereduceerde comfort op alternatieve routes. Door een verstoring kan grote drukte ontstaan op resterende routes die in het multi-level netwerk beschikbaar zijn, wat leidt tot verminderd reiscomfort, en waarbij reizigers soms zelfs niet met het eerste voertuig meekunnen. Dit comfort- en capaciteitseffect wordt tot op heden nauwelijks meegenomen in OV verkeersmodellen. Recente ontwikkelingen in het softwarepakket OmniTRANS maken het echter mogelijk om deze effecten mee te nemen bij het modelleren van verstoringen, waardoor de maatschappelijke kosten van discomfort gekwantificeerd kunnen worden. Het niet meenemen van deze post kan leiden tot substantiële onderschattingen van de maatschappelijke kosten van verstoringen.
Onze methodologie kwantificeert, door nieuwe toepassingen van OV verkeersmodellen, naast de kosten ook de baten van mogelijke robuustheidsmaatregelen. Hiermee ondersteunt en rationaliseert onze methodologie besluitvorming van vervoerders en OV autoriteiten.

De presentatie vind je hier: Platos 2015

© 2011 TU Delft