Posts tagged chipkaart

Betrouwbare OV netwerken: Reizigersperspectief centraal dankzij anonieme chipkaartdata

Voor het openbaar vervoer is betrouwbaarheid een kwaliteitsfactor van belang.
Terwijl we een beetje vertraging met de auto wel oké vinden, is elk minuutje
dat een bus, trein of tram te laat arriveert, er echt één te veel. Vervoerders en
openbaarvervoerautoriteiten zijn dan ook continu op zoek naar mogelijkheden
om de betrouwbaarheid te verbeteren. Maar hoe bepaal je eigenlijk of
een maatregel werkt? Wat is een goede maat voor betrouwbaarheid? In
deze bijdrage maken we een boeiend uitstapje naar de wereld van haltes,
overstappen en OV-chipkaarten.

Lees het artikel uit NM magazine HIER
Lees het uitgebreide wetenschappelijke artikel HIER

Innovatieve toepassingen van OV chipkaartdata

Er wordt veel gesproken over nieuwe databronnen die helpen bij de uitdagingen in de OV wereld. De OV chipkaart is één van de bronnen, waarmee we het OV beter en efficiënter kunnen maken. Maar tot nog toe gebruikten we deze data vooral ter vervanging van eerdere handmatig verkregen data. In dit paper gaan we een stap verder. Aan de hand van drie innovatieve cases laten we zien dat er veel meer met deze data te doen is.

Met OV chipkaart data stelden wij een OV-model op voor Den Haag voor korte termijn prognoses. Dit is de basis geweest voor de drie cases:

De vraag voor eerste case was: zijn elasticiteits¬parameters af te leiden uit revealed preference data voor verschillende praktijksituaties? Wij merken dat dit goed mogelijk is. En dat het gedrag van reizigers verschilt per context: reizigers reageren heftiger op ‘tijdelijk ongemak’ dan in een vergelijkbare structurele situatie. De elasticiteitsparameter kan tot 25% hoger liggen.

Ook kijken wij naar een belangrijk, maar vaak in modellen genegeerd aspect van reisbeleving: comfort. Voor de regio Den Haag nemen wij expliciet comfort op in de (model) kostenfunctie door rekening te houden met de capaciteit van voertuigen. De bestaande vraag leiden wij direct af uit OV chipkaartgegevens. Onze studieresultaten tonen aan dat het niet beschouwen van capaciteit en comfort kan leiden tot een onderschatting van de vervoerwaarde-effecten tot 30%. We laten ook zien dat deze aanpak kan worden toegepast in de praktijk: de rekentijd is kort en het leidt tot een betere vraagraming van openbaar vervoer.

Tot slot kijken we naar de bruikbaarheid en inzet van andere databronnen. Als pilot hebben we een vergelijkende analyse tussen OV chipkaart- en GSM data uitgevoerd voor de regio Emmen. We tonen aan dat de GSM data aanvullend is: deze is namelijk ook bruikbaar voor analyse van de niet-ov-reizigers. Tot slot laten we zien dat het combineren van de twee databronnen inzicht verschaft in de potentie voor OV op specifieke HB relaties. Zo benoemen wij een aantal relaties in de regio Emmen waar op basis van de data het OV gebruik (vooralsnog) achter blijft en dus potentie heeft.

Alle drie de cases laten innovatie zien op onderzoek en toepassing van OV chipkaartdata. Wij gaan door met deze innovaties voor een beter en efficiënter OV!

Lees hier onze paper: CVS2015: Innovatie met chipkaartdata

De presentatie vind je HIER

New generation of public transport models: predicting ridership by smartcard data

In the public transport industry we observe the rise of a new generation of transport demand models. We applied Dutch smart card data for analysis of passenger volumes and routing and performed what-if analyses by using existing transport planning software. We focused specifically on public transport operators by providing them relative simple (easy to build, low calculation time) models to perform these what-if analyses. The data, including transfer information, is converted to passengers per line and an OD-matrix between stops. This matrix is assigned to the network to reproduce the measured passenger flows. After this step, what-if analysis becomes possible. The effects of line changes on route choice can already be investigated when fixed demand is assumed. However, by introducing an elastic demand model the realism of the modeled effects is improved, because network changes induce changes in level of service, which affects the demand for public transportation. This elastic demand model was applied on a case study in The Hague. We imported the smart card data into a transport model and connected the data with the network. The tool turned out to be very valuable for the operator to gain insights into the effects of small network changes.
In addition to this basic model, we also applied a capacity constrained assignment method. The most important aspects on which passengers base their choice for public transport travelling are the perceived travel time, costs, reliability and comfort. Despite this importance, comfort is often not explicitly considered when predicting demand. The case study results indicate that not considering capacity and comfort effects can lead to a substantial underestimation of effects of certain measures aiming to improve public transport. This means that benefits of measures that reduce crowding for both passengers and operators can now be quantified and incorporated in the decision-making process. We also illustrate that this extended modelling framework can be applied in practice, requiring short calculation times and leading to better predictions of public transport demand.

Find our ETC 2015 presentation HERE

Urban Mobility Lab: benut databerg

CROW-KpVV hield op 28 mei in Utrecht de eerste landelijke kennisdag over het benutten van data in het openbaar vervoer. Het delen van data levert veel op, maar is nog geen gemeengoed. Tijdens de bijeenkomst stond onder andere het Urban Mobility Lab in de schijnwerpers: een proeftuin vol data over vervoerpatronen in Amsterdam.

Lees het hele artikel: Urban Mobility Lab in OV Magazine

Data-driven public transport ridership prediction approach including comfort aspects

The most important aspects on which passengers base their choice whether to travel by public transport are the perceived travel time, costs, reliability and comfort. Despite its importance, comfort is often not explicitly considered when predicting demand for public transport. In this paper, we include comfort level in a modelling framework by incorporating capacity in the public transport assignment. This modelling framework is applied in the public transport model of HTM, the urban public transport operator of The Hague. The current transportation demand is directly derived from smart card data and future demand is estimated using an elasticity based approach. The case study results indicate that not considering capacity and comfort effects can lead to a substantial underestimation of effects of certain measures aiming to improve public transport (up to 30%). We also illustrate that this extended modelling framework can be applied in practice: it has a short computation time and leads to better predictions of public transport demand.

 

Check our presentation: Presentation CASPT2015
Read our full paper: Van Oort et al: Datadriven PT modelling CASPT2015

Urban Mobility Lab

Op 28 mei 2015 organiseerde CROW-KpVV in de Galgenwaard in Utrecht de eerste landelijke bijeenkomst over het benutten van data in het openbaar vervoer. Het doel van deze onafhankelijke kennisdag was om te laten zien welke toepassingsmogelijkheden er zijn voor data die beschikbaar is. Zo kan slim gebruik hiervan overheden helpen bij het nemen van beleidsbeslissingen en beheren van een concessie. Daarnaast kunnen verschillende regio’s van elkaar leren door data te koppelen en te vergelijken. Er liggen kortom volop kansen op het gebied van datagebruik in het ov.

Niels van Oort, assistant professor ov aan de TU Delft, vertelde tijdens het plenaire deel over hoe Amsterdam als levend mobiliteitslaboratorium fungeert. Hoe kunnen we alle voetgangers-, fiets-, auto- en OV-data verzamelen, combineren en visualiseren om te komen tot een beter begrip en kennis van het totale mobiliteitssysteem? In een verdiepende deelsessie stonden de mogelijkheden voor het ov centraal: wat kunnen we leren over het ov door gebruik te maken van databronnen als GSM, GOVI en OV-chipkaart?

Bekijk hier de presentatie: Urban Mobility Lab

Short term ridership prediction in public transport by processing smart card data

Public transport operators are exposed to massive data collection from their smart card systems. In the Netherlands, every passenger needs to check in and to check out, resulting in detailed information on the demand pattern. In buses and trams, checking in and checking out takes place in the vehicle, providing good information on route choice. This paper explores options for using this smart card data for analysis and performing what-if analyses by using transport planning software. This new generation of transport demand models, based on big data, is an addition to the existing range of transport demand models and approaches. The intention is to provide public transport operators with a simple (easy to build) model to perform these what-if analyses. The data is converted to passengers per line and an OD-matrix between stops. This matrix is assigned to the network to reproduce the measured passenger flows. After this step, what-if analysis becomes possible. With fixed demand, line changes can be investigated. With the introduction of an elastic demand model, changes in level of service realistically affect passenger numbers. This method was applied on a case study in The Hague. We imported the smart card data into a transport model and connected the data with the network. The tool turned out to be very valuable for the operator to gain insights into the effect of small changes.

Read the paper: TRB 2015

Betere OV prognoses met anonieme OV-Chipkaartdata

Door de introductie van de OV-Chipkaart komen er grote hoeveelheden data over reizigersstromen in het OV beschikbaar. Naast data over de voertuigprestaties (via GOVI bijv.) hebben de inzichten uit deze reizigersdata een enorm potentieel voor de optimalisatie van het OV-product. Dit artikel verkent de mogelijkheden om, de privacy van reizigers respecterend, deze data in te zetten voor de voorspelling van nieuwe reispatronen bij aanpassingen in het netwerk en/of de dienstregeling. Het doel is om een relatief eenvoudige “What-if”-methodiek te ontwerpen, die snel en voldoende nauwkeurig reizigersprognoses kan maken. Hiermee ontstaat een nieuwe generatie verkeersmodellen.

De aanpak combineert de eenvoud en snelheid van de “sigarenkist” en de visualisatie- en rekenkracht van een verkeersmodel. We hebben de methodiek ingebed in bestaande OmniTRANS-verkeersmodelsoftware. De anonieme OV-chipkaartdata wordt toegedeeld aan het OV netwerk in het model, waardoor huidige stromen gevisualiseerd kunnen worden. Door gebruik te maken van elasticiteiten over de relatie tussen OV-kwaliteit en OV-gebruik (zowel uit de literatuur als op basis van gangbare vuistregels) kunnen eenvoudige prognoses gemaakt worden. Die dienen bijvoorbeeld om inzicht te krijgen in inkomstenderving door omleidingen of om effecten te schatten van budgettaire maatregelen.

We hebben de gepresenteerde methodiek succesvol toegepast op het tramnetwerk van HTM in Den Haag, waarmee sneller en nauwkeurige dan voorheen prognoses gemaakt kunnen worden. Voor het afwegen van scenario’s in de ontwikkeling van het railnetwerk en bij het afwegen van tijdelijke omleidingsscenario’s gebruikt HTM de aanpak inmiddels om reizigerseffecten te prognosticeren. Deze analyses helpen in het maken van betere keuzes en in het besluitvormingsproces met de OV-autoriteit Haaglanden.

Hoewel waardevol, zijn er ook een aantal beperkingen aan deze methode. De aanpak is unimodaal en door het gebruik van elasticiteiten slechts toepasbaar voor kleine veranderingen op relatief korte termijn. Nu met de OV-Chipkaartdata meer inzichten kunnen worden verkregen, raden wij aan de gehanteerde elasticiteiten te actualiseren. Gedrag van reizigers bij kleine veranderingen kan relatief eenvoudig bepaald worden nu deze data voorhanden is. De volgende stap in ons onderzoek is het koppelen van de reizigersdata aan de voertuigdata, waardoor gedetailleerdere analyses gemaakt kunnen worden van bijvoorbeeld reizigerspunctualiteit.

Lees meer:
Paper CVS2014 of Presentatie

OV-chipdata als tool voor efficiënt OV

De kosten in het OV staan onder druk, maar tegelijkertijd eist de reiziger hogere
kwaliteit. Dat vraagt om een hogere kostendekkingsgraad en een hogere bezettingsgraad.
Hoe kan big data hier een rol in spelen? “Het draait vooral om een
combinatie van voertuig- en reizigersdata; een analyse van het verleden en een
voorspell¡ng van de toekomst”, stelt OV-adv¡seur Niels van Oort. “Analyse kan
leiden tot verbetervoorstellen en uiteindelijk optimalisatie van de OV-dienst.”

Lees hier het volledige interview: Verkeer in Beeld

OV data wereldwijd omarmd

Niels van Oort was begin juli bij de eerste ‘Workshop on Smart Card Data Analysis’ in
Japan. “Het feit dat wij één nationaal systeem hebben met de OV-chipkaart maakte
indruk op mijn collega’s. Toch kijk ik ondanks onze landelijke dekking met enige
jaloezie naar hoe andere landen data omarmen voor beter ov.”

Lees het artikel: OV-Magazine aug 2014

© 2011 TU Delft