Recent Comments

    Operations of zero-emission buses: impacts of charging methods and mechanisms on costs and the level of service

    To limit global warming and strive for more liveable and sustainable cities, innovative zero-emission buses are on the rise all around the world. For now, only trolley, battery and fuel-cell electric vehicles can be classified as (on the pipe) zero-emission vehicles. Different charging methods, including different charging systems and power, are available to charge battery electric vehicles. However, scientific literature focused on the operation and charging scheduling of electric vehicles is scarce.
    In this study, a comparison of different applied charging methods for electric buses is obtained. A new ZE-bus station simulation method is developed to assess charging methods and charging regulations with regard to their impacts on costs and level of service.
    The shift to zero emission bus transport is meant for achieving more sustainable and liveable cities. However, this research concludes that this is involved with higher costs and passenger disturbances. The investment costs increase substantially. Benefits of electric operations, including vehicle propulsion cost savings up to 70 percent, are not able to compensate these high investments. (Slow) depot charging offers opportunities for operations on short distance lines. The depot location should be close to a bus station and additional fleet is required. In order to prevent fleet overcapacity, vehicles should be recharged with high charging power along the line, preferably at combined bus stations and terminals in order to prevent charging related delays. Dynamic/In-motion charging – still in its infancy stage yet – offers opportunities to prevent these delays due to combined charging and operation time.

    Find the TRB paper and poster of Max Wiercx HERE and HERE

    Be Sociable, Share!

    Comments are closed.

    © 2011 TU Delft