Why light rail?

dr. ir. N. van Oort

Assistant professor public transport Transport and Planning

Public Transport Consultant Goudappel Coffeng

dr. ir. R. v/d Bijl Independent urban planner *RVDB Urban Planning/Lightrail.nl*

Background

Dutch light rail experiences: success and fail aspects
Justification
Not only about transport
Smart cities

Today:

Framework impacts of light rail Case of neglected benefits: service reliability

Justification of light rail

Framework of 5 E's

- Efficiency
- Effectiveness
- Environment
- Economy
- Equity

SMART CITIES

Efficiency (network and operations)

- Meeting demand
- Optimizing operational costs
- Use of (public) space
- Quality of service
- Railbonus (Bunschoten et. al)

Effectiveness (urban design)

- All kinds of (indirect) effects:
 - Urban planning & design
 - (Restructuring) the city
 - Quality of the city
 - Livability
 - Safety
 - Image & perception of the city

Environment

- More efficient regarding:
 - Energy consumption
 - (Direct) emissions
 - Land use

Economy

- Land value
- Real estate value
- Retail turnover & quality
- Employment
- Property development

Rails to Real Estate

Development Patterns along Three New Transit Lines

Equity

- Social access & connection:
 - Contra-segregation
 - Social mobility

Example efficiency

Actual case

Uithoflijn Utrecht

Decision making in public transport

- Most PT projects aim at enhanced reliability
- Service reliability is often missing in CBA and transport models
- We developed:
 - Methodology to incorporate passenger impacts of service reliability:
 - Transport models (reliable forecasts)
 - Cost benefit analyses
- Applied in Utrecht

Case: Uithoflijn (line 12)

Problem analysis

- Busiest bus line in the Netherlands: 27.000 passengers per day
- Frequency of 23x/hour/direction using double-articulated buses: 30x/hour/direction necessary
- Poor reliability and lack of capacity
- Mobility is still growing
 - +25% planned property in the Uithof: +8.000 students, +10.000 employees
 - Total: 53.000 students, 30.000 employees and 3.500 visitors (hospital)
 - No additional parking space
 - Demand forecast: 46.000 passenger per day

Solution

Introduction of a light rail line: 16-20x/hour

Poor reliability

-12 connected CAF vehicles (2x37,5 m)

2018

Ministry requires CBA

- Regional parties agreed with plans and finances
- €110 million of Minister of Transport available (about 1/3 of total costs)

Our approach

Calculations of:

- Future demand, including tram bonus impacts
- Costs (infrastructure and operations)
- Benefits
 - Travel time gains
 - Reliability gains

Results CBA

	Value compared to reference case (millions in 2011)		
Investment costs	-€222		_
Operating costs	€66	Additional	
Total costs	€288	waiting time due	
		to unreliability	
Additional ticket revenues	€40		
Increased travel time	€67	L	
Service reliability effects			
- Less waiting time	€123		
 Reduction in distribution 	€78 _\		1
- Increased probability of finding a seat	Ē4	Distribution of	
in the vehicle		travel time due	
External effects (emissions, safety,	€8	to unreliability	
etc.)			
Total benefits	E330		
Benefits-costs			
Benefit cost ratio	1.2		

Service reliability effects are over >60% of all benefits!

This method was approved by the Dutch Ministry and the Minister provided the ${\in}110$ million

Summary

- Lessons from light rail projects: justification and broader scope than transport
- Framework of 5 E's
 - Efficiency
 - Effectiveness
 - Economy
 - Environment
 - Equity
- Smart City

Case

- Light rail enables increase in service realibility
- Little attention to service reliability in cost-benefit analyses
- Service reliability benefits made the difference in Utrecht

Future work

Sharing knowledge and insights

Light rail book

Investing in the City

Lessons from 47 light rail projects

Rob van der Bijl, Bert Bukman & Niels van Oort

Dutch version launched this month English one expected within a year

Questions?

Niels van Oort

N.vanOort@TUDelft.nl

Papers: https://nielsvanoort.weblog.tudelft.nl/

Light rail: <u>www.lightrail.nl</u>

EMTA report: Light rail explained <u>www.emta.com</u> -> Publications -> Surveys

