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ABSTRACT

Public transport operators are exposed to massitae abllection from their smart card systems.
In the Netherlands, every passenger needs to dheakd to check out, resulting in detailed
information on the demand pattern. In buses amdgrahecking in and checking out takes place
in the vehicle, providing good information on roeteice. This paper explores options for using
this smart card data for analysis and performingtwhanalyses by using transport planning
software. This new generation of transport demandets, based on big data, is an addition to
the existing range of transport demand models aptbaches. The intention is to provide public
transport operators with a simple (easy to builddet to perform these what-if analyses. The
data is converted to passengers per line and am@ix between stops. This matrix is assigned
to the network to reproduce the measured passdiuyes. After this step, what-if analysis
becomes possible. With fixed demand, line changase investigated. With the introduction of
an elastic demand model, changes in level of semaalistically affect passenger numbers. This
method was applied on a case study in The HagueinWderted the smart card data into a
transport model and connected the data with theorkt The tool turned out to be very valuable
for the operator to gain insights into the effeicsmall changes.

Keywords: public transport, smart card data, demand modelargcasting
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1. INTRODUCTION

Recently, many cities and regions introduced a sozad system for their public transport systemg. (e

1, 2, 3, 4 and5). In addition to ticket handling, being an altaima for individual regional or urban
tickets, these systems also provide valuable d&fithout these systems, information of origins and
destinations, number of passengers, trip lengtits,can only be made available by time and budget
consuming surveys. These surveys often only proliidited data due to time and budget restrictions.
Smart card systems have the potential of providimge and better insights of revealed passenger
behavior. These insights are helpful when dealiitg the main current challenges in the public tpams
industry.

Within the public transport industry, we see selivehallenges. Due to the increased focus on cost
savings, there is more attention to measures timkase cost efficiency of public transport. In the
meantime, passengers require higher quality ofstreices. Although both developments seem to be a
contradiction, measures do exist that serve bofbctibes. Improving operational speed and service
reliability, for instance, will lead to higher gitsd and lower costs at the same time, as showiiepy
However, to find and optimize cost-effective measuidata is required. Fortunately, the amount tf da
is increasing rapidly. Automated Vehicle LocatidV() data, has already been available for a longgti
(e.g 7, 8 and9) and recently much more passenger data (Autoniasdenger Counting (APC) data) has
become available as well)j. These data support public transport designdaeision making, since they
enable planners to illustrate the costs of cermmwblems and the benefits (and additional costs) of
potential solutions, for instance the transformatid a regular bus line into a high quality Bus Rap
Transport (BRT) system or into a tram link)) or optimized synchronization between tram anéhtra
(11). These costs and benefits are relevant for detisiaking and may be incorporated in cost-benefit
analyses.

This paper deals with the Dutch smart card systam so-calledV-Chipkaart, and illustrates
potential application of the data. Our objectivetasprocess the data in such a way that it supports
optimization of the level of service by improvedwerk and timetable design. The outline of thisgrap
is as follows. Chapter 2 will elaborate on smartdcsystems in general and the Dutch smart card data
specifically. The next section describes our apgitda apply the data to predict future ridershipjcl is
applied in a case study, presented by Section 4. cdmclusion and reflection on the approach are
provided in Section 5.

2. SMART CARDSAND DATA

2.1 Smart Card Data Applications
In (12) the following major advantages of smart card déia transport service providers are
distinguished:

- Large volumes of personal travel data.

- Being able to link those data to the individualdcand/or traveler.

- Having access to continuous trip data coveringdompgriods of time.

- Knowing who the most frequent customers are.

Depending on the exact characteristics of the systaore insights may be gained. The number of
areas where smart cards are applied increasedyrabaimous examples are London (Oyster card) and
Hong Kong (Octopus card). Depending on the techgyolssed, limitations in applications arise. On the
London buses, for instance, passengers only tapnih techniques are required to determine the
destination stop). In (2), an example of Beijing is presented where notlondnformation is connected
to the smart card data and several data sourcestbde connected to get that information.1B) (it is
mentioned that travel purpose is hard to obtaimftbe data and irlB), a method is presented to assess
the number of boardings, since the smart carddiza not provide this.



©CoO~NO UOWNPE

N. van Oort, T. Brands, E. de Romph 4

Canadian researcher$) (present a broad overview of applications of sntarid data, varying from
strategic and tactical planning optimization to ragienal improvements. Most applications aim at
assessing OD-patterns (el 15) and route choice behavior (eXf) and transfer analysis (e.§j7).
Surprisingly, improved forecasting based on histdriata is only mentioned once.

2.2 The Dutch Smart Card System: OV-Chipkaart
The Dutch smart card, th®V-Chipkaart, replaced the former payment system, which watedal
Srippenkaart (18). The latter system was introduced in 1980 andaogg all individual urban and
regional systems by one nationwide paying systdma.Slrippenkaart was valid in the whole country and
the travel costs depended on the number of zomeagh which one travelled. The size of these zones
differed per region and so did the total price. Huwantage of this system was that everybody could
travel with one ticket in bus, tram and metro tlglmout the country. The major disadvantage wasrthat
information was available to the operators andanittes where people travelled. It was known whbie
tickets were sold (shops and counters) but not evitleey were devaluated. Expensive surveys were
required to determine the distribution key over aplerators. Every year, total revenues had to be
distributed by this key. To solve this, the pubtEnsport operators started to develop a smartayatém
in 2001. The system was introduced in Rotterdany aml2005 and in 2012 the full country was
equipped.

The Dutch smart card uses nfc-chip technology as$engers have to check in and to check out.
All public transport (including train services) mccessible with this smart card. Thus, valuable
information is measured about origin-destinatiottgras (on station/stop level) of all public traogp
users. In the Netherlands, the check-in and chetkievices are either located on the platform tffains
and metros) or located inside the vehicle (for bus® trams). The most detailed information islatsbe
in the latter case, where each trip in a journejpaney may consist of multiple trips, with a tséer in
between) is tracked. The complete route througlpthic transport network is therefore traceabléew
the smart card devices are located on the platfoomy information is available of the first andethast
station, making route search through the publingpart network necessary for the analyst (26). In
the remainder of this paper we describe the sanatinere a check-in and a check-out are availattlea
vehicle. This is the case in a vast majority of tlegional and urban public transport lines in the
Netherlands (all bus and tram lines).

Until March 2014, 19 million smart cards were proed and every week, about 2.8
million people travel using their smart card, proilg about 42 million transactions per week,
consisting of checking in and out, but also e.@cking accounf19).

2.3 Dutch Smart Card Data

An example of the raw data format, provided by Ehdch smart card transactions, is given in Table 1.
Every record contains a trip, with a check-in staticheck-in time, check-out station and checktioog.
The anonymous smart card ID can be used to conmbirigple trips to a journey, hence identifying the
transfers. Furthermore, a public transport line bemis given, so that the trip may be matched to a
specific service in case multiple public transpiores run in parallel. Potentially, the vehicle rhgn and

/or run number are also given, enabling detailealysis of distribution among individual servicesr f
example to provide solutions for capacity probleFgsthermore, some information may be provided on
smart card type / ticket type to predict trip puspofor example an annual season ticket (usuadgl €
commuting), a student card (usually used for edochtor a special offer tickets (usually used for
recreational purposes).
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TABLE 1 A sample of fictitious smart card data: every record represents a trip in a public
transport vehicle. For simplicity, all datain this exampleisfor a specific date

Chip 1D Check in | Check out | Check in | Check out | Line (vehicle (ticket
stop stop time time number number) type)

1 35 488 10:27 10:52 9 Regular
single

2 23 86 8:01 8:09 1 Student

2 86 90 8:17 8:55 3 Student

3 73 94 7:20 7:53 4 Annual
ticket

3 94 73 16:55 17:27 4 Annual
ticket

When looking at Table 1, the first trip is the omtip conducted on this day by chip ID 1. This
may be a trip for visiting family (including an awveght stay) or the return trip may be made by(eara
passenger). The second and third records are frereame chip ID. Furthermore, the trips are vergel
to each other in time, so we may assume these drips part of the same journey, which includes a
transfer. In this example we can even see thaaltgbting stop for the first trip and boarding stiop the
second stop of the second chip ID are the samethimitis not necessary to form a transfer: a short
walking leg may be in between (for example in tigasion of a large station with various tracksrothe
situation of several on street stops). Finally,lts two records are of the same chip ID as el these
trips are apart from each other in time, so théps should not be seen as one journey. We camabse
that, very likely, this is a typical commuting patt: in the morning the traveler goes to work agtdms
home in the evening. The ticket type ‘annual titkeainother indication for commuting.

For the train and metro system the line numbemigited because the check-in and check-out
takes place at the station instead of in the vehMbostly the line is easily derived from the chétland
check-out station using path-finding.

The technical system of the Dutch smart card systentains several component§9) see Figure

1):

- Level 0: the smart card, which may contain persgmatiucts, for example to get discounts or
unlimited travel.

- Level 1: Devices that have direct contact with sieart cards: check-in and check-out devices
and ticket vending machines.

- Level 2: Local systems at public transport opegatbiat collect data from level 1 devices and
temporarily store it (for example located at a agage).

- Level 3: Central system for each public transpamnpany, where all data of a company is
available and where the data is prepared to be tetitk national (public transport smart card)
data collecting agency (i.e. TLS).

- Level 4: The database of the national data coligatigency. Here the smart card transactions are
verified and the financial consequences of thesaations are determined (the actual payment
takes place). Another function is providing thesoeral transaction history to the smart card user.
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Level 0 Level 1
smart card Check-in and check-out devices

Ticket vending machines

v

Level 2
Local storage systems at PT company

Level 4

Central database of
the national data
collecting agency

Level 3
Central storage system of PT company

FIGURE 1 Dataflow through the Dutch smart card system, from the smart card in level O to the
national databasein level 4. A distinction may be made between components of the national agency
(left) and components of the PT companies (right).

So technically speaking, the data is availablehatindividual level, giving large possibilities 1
detailed analysis. However, there are some concabout the availability of the data and priva
agreements thahust be obtained. Privacy is the most importanieéssince individual data is us It
may not be possible to identify a unique prc from the data of one day, but if the dat, say, a month
is analyzed, it may become possible to derive wepéterns for individual users, which, combined w
other data like home address and work locationhiigsult in a match betwe an (anonymous) smart
card ID and a name. From that moment, this indiaidan be followed on all his / her movements i
Dutch public transport network. Therefore, Dutch pdy law states that these individual dcannot be
kept more than 18 months.

Another concern is the availability for analysifieTdata is owned by public transport operators
most of them see it as miidential company information (mainly relevant dwethe tendering system
the Dutch public transport concessions). Data dff ame public transport operator now regule
becomes available for analysis, since this confidity can be regulated icontracts. But combinin
data from more operators (for example to analyamsfier movements on a train station) is
complicated due to this issuet this moment, botthe National and regiongbvernmers are developing
methods to solve these issliegooperation with the operatc

3. PREDICTING RIDERSHIP BY SMART CARD DATA

3.1 Introduction

Making predictions for public transporan be done in several ways, ranging from multimadaivity
based models to simple rules using spread sheethel Netherlands, a hierarchy of traffic forec
models exists. The national model is a disaggregatedel mainly focused on rc travel. Four more
detailed regional models exist using the same jmlies as the national moy, but with more detailed
networks. Public transport is modeled during thatriiution phase of the model, but the level of/mer
matrices are mainly exogenous.

On the urban level, many cities in The Netherlands llag# own models. In most of these models pL
transport is modeled in more detail on the netweslel. However, the models agenerally simpler.
Most of them are multimodal gravity models for esting the demand. Recently, the importance of
bicycle as access mode to public transport wagrezex, resulting in slightly more sophisticated mod
using a nested logit structure that distinguishesveen different access and egress modes in
transport 20).
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Most of the public transport operators in The Ne#dras do not use transport models for
predicting ridership or changes in demand. Mostisead sheets are used with relatively simple rules.
However, the transport models could provide valeainisights for most public transport operators.
Enriching these models with smart card data impa¥e potential of these models. Many regions,
however, do not have a multimodal model, or thell®f detail of these models does not match thellev
of operation within the public transport company.

With the introduction of the smart card system salvpublic transport operators wonder what
they can do with this massive data collection. Maimecause of the continuous nature of this data,
systems and ideas have emerged to use this fangaimore insight into current use, but also to pic
predictions. Patterns over time could provide vialeanformation, if suitable software to deal witiese
existed. Modeling software, capable of analyzingsnge model output, seems to be a logical candidate
to perform this task. Apart from visualization aadalysis of the measured data, it seems an awacti
option to perform what-if analysis using the samivgre.

Several options exist to allow what-if analysisngssmart card data. A station to station matrix
can be derived directly from the data. This matreds to be converted to a zone-to-zone matrix Thi
can be done using the Zenith assignment modeltimage the stop usage per zone (20). In the case
described in this paper this step is skipped. Tdmulting public transport-matrix could replace the
estimated matrix from the model. Once such a masdriderived the assignment needs to reproduce the
passenger occupancies per line from the smartdzted This requires calibrating the model routdagho
parameters.

If a multimodal model exists the growth factorsceddted in the model could be used to produce
forecasts. When no model exists a unimodal appreacid be followed using elasticities to estimate
demand shifts. When no elasticities are availalihatyif analysis are possible with fixed demand. It
would only show the effects on route choice.

Which approach seems most feasible depends orv#ilatility of existing models and the time
horizon for the decision making. Table 2 gives aeraiew of the possibilities.
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TABLE 2 Possibilities public transport modeling

M ultimodal model Elasticity model Quick-Scan model

Modes Car, public transport, bikeg  Public transport Pubiamsport

Scale National, regional, urban Regional, Urban Urban

Time horizon 10-20 years < 10 years <5 years

Project type Strategic, policies| Tactical, changing lineg, Tactical, changing lineg,
infrastructure changes frequencies, stops frequencies

Usage Modal split, cost-benefif Network effect Route choice effects
analysis

In this paper we will focus on the elasticity apmeb. These kind of models are relatively simplenake
and can make good use of the available data.

3.2 Elasticity model

Given an OD matrix that is observed in smart car@d dthe step to short and medium time predictaon ¢
be made, for example to assess the network efééctsanging the frequency of lines, changing roates
lines, introducing new routes and increasing theedpof a line. These measures may be temporary or
permanent. In this paper we present a method shiadsed on demand elasticity: the relative chamge i
costs per OD pair have an effect on transportaliemand on that OD pair. The costs of a trip are the
generalized costs, comprised of in-vehicle timdfimgtime, number of transfers (penalties) ane faxll
attributes of the trip are expressed in monetatyegmby the coefficients. A Value of Time for the
Dutch situation of 6 Euros per hour is used fovéticle time(21). For waiting time, a factor is used that
is one and a half times as high as the factorrfarehicle time (i.e. 9 Euros per houB2j. A transfer
penalty of 5 minutes is used. Equation 1 showstheulation of generalized costs for OD pigjir Note
that the coefficient of fare, is equal to 1, because costs are expressed intangnvalues.

Cij =alTl-j+a2WTij+a3NTl-j+0(4Fij (1)
With:
Cij Generalized costs on OD pajr
aq,0,,03,a4  Weight coefficients in generalized costs calcolati
T;; In-vehicle travel time on OD paiijj
WT;; Waiting time on OD paiir;j
NT;; Number of transfers on OD pajr
F;; Fare to be paid by the traveler on OD pgir

Figure 2 shows the steps in our elastic demandilediicn. First, using a public transport route
choice algorithm (e.q20), generalized cost matrices are calculated fobtee situation and the situation
that includes a network scenario. Note that thiguires successful calibration of the route choice
parameters: we here assume that the route chgjogthim is able to reproduce the line loads inliaee
situation. Comparing the cost matrices result®lative cost changes per OD pair. Using the OD imatr
for the base situation (from smart card data) amcelasticity value (e.g23, 24 and 25), the relative
changes in OD flows are calculated, resulting irD&hmatrix for the network scenario. The final sitep
to assign this OD demand to the public transpotivork, again using a public transport route choice
algorithm. This process is also captured in EquaZithat calculates the new OD demand (in the tiitna
with the network scenario) from the base demarel,cthsts in both situations and the elasticity value
The subtraction and later addition of 1 in the digmais to convert from a growth factor to relative
growth or vice versa. Note that in this definitithve value for elasticity should be negative to dalistic,
since an increase in costs then leads to a decireademand. Consequently, the demand change is
directly calculated from generalized costs. Thidifferent from using, for example, travel time stlaity
or fare elasticity, since those values only inclggdecific components of the generalized costs.VEhee
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of generalized costs elasticity is chosen in a Wy the effect of a travel time or fare changegtiwu
corresponds with the changes that would occur wisérg travel time or fare elasticity.

Cost matrix Cost matrix
base scenario
| I
v
Relative changes
OD matrix OD matrix PT assignmer
base ”| scenario ”| scenario
Demanc
elasticity

FIGURE 2 Schematic representation of the demand prediction model.

1
D@:(E(i—:é—1)+1)*p;} @
With:
Dl-lj Demand on OD pair i,j in the scenario
E Elasticity
Cl-lj Generalized costs in the scenario
cl Generalized costs in the base situation

DY Demand on OD pair i,j in the base situation

Extensions of this model can be made when new hgusi job developments take place in the
region at study. The relative growth of housingalyrs around public transport stops may be converted
into growth factors to be applied to rows or colsnofi the OD matrix. Then the assumption is made tha
the distribution of trips among destinations orgomé does not change from the observed distribution
(based on smart card data) in the base situatidrerMboth rows and columns are adjusted, a balancing
method should be applied, for example the Furnesthad.

4. APPLICATION ON THE TRAM NETWORK OF THE HAGUE

4.1 Introduction

We applied the approach of connecting data torsp@rt model in a case study. In this case study, w
tested whether our approach presented in the pregection would work with actual data. We conrgbcte
smart card data of HTM, the tram operator in Theu¢a(about 500,000 inhabitant&' [&rgest city of the
Netherlands) to a transport model built in OmniTRANIhe city of The Hague has 12 tram/light rail
lines with a total length of about 335km. In addlitito these tram lines, the public transport in amaiind

the city consists of urban and regional bus lines$ milway lines. In this case, we have only inigeged

the tram lines. This made the calibration of thete&achoice model relatively simple because in rnases
only one route choice option existed. In futureesgsh we will add the bus and train services to the
model. This will give us more possibilities to talite the route choice model.
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4.2 Evaluation

A first step in supporting public transport plargsiand designers is visualizing historical datg6land
26), examples of AVL data visualization are providedaddition, illustrating smart card data on a
geographical layer is beneficial as well.

To combine the smart card data with geographidafimation, we imported the public transport
network into the software environment OmniTRANSnhgstimetable data which is publicly available in
GTFS (General Transit Feed System) format. Thisn&trwas introduced by Google to allow public
transport operators to feed their timetables to gdod/aps. This data contains the lines, positiohs o
stops and the departure and arrival times of eanhat each stop. It is translated into frequenaias
travel times per line per time period (AM peak, RiMak, off-peak day period and evening). The
information of the lines (including the locationf siops) is mapped geographically on the underlying
infrastructure, in this case the tram rail netwofkThe Hague. The resulting network can be seen in
Figure 3.

FIGURE 3 All Linesin thetram network of The Hague (each lineis plotted in a separate color).

In this case the decision was made to put the zdirestly at the stops. In the anticipated
extension with bus lines we will use modeling zoimssead.

The combination of geographical data of stops anesland the smart card data is used to
visualize passenger flows on the network. To thid, ¢he smart card data (in the format of Tablés1)
first preprocessed: invalid records are removeddf@ample records with the same stop for checkaoh a
for check-out) and trips are combined to journeysdentifying transfers, based on smart card ID and
check-out / check-in time. After that, the journeye loaded onto the network, following the chetk-i
and check-out stop and public transport line nunibéne data. When the network data (from GTFS) and
smart card data (from the public transport comparfiyhe same date are used, these two data sdiirces
very well: almost all records from the smart caatbdcan be directly imported.

The resulting geographical visualization can beashover time, since the check-in and check-
out times are known. Given an assumption which staenp determines the time block of the trip (check
in time, check-out time or an average between ), tthe data can be visualized per aggregated time
period, for example per one-hour period. Figurbas the AM peak for a one-day sample: it can blear
be observed that before and after the peak petiedlows are much lower than during the peak merio
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(see the presented loads in the added circle &amce) This time-dependent data may as well be
visualized in an animation. The visualization heipsinderstand the past: identifying high or loomft,
identifying important (transfer) stops and underdiag the difference among time periods over the da

Since the capacity of transit vehicles is known ansit line, as well as the frequency of the
transit lines (stored in the network data), thégerés are easily extended to intensity-capactipsaand
plots, showing the interaction between transit sugmd demand. This enables detecting capacity
problems, dependent on the hour of the day.

FIGURE 4 An example of tlme dependent V|suaI|zat|0n of smart card data upper 6AM -TAM;
upper right: 7AM-8AM; lower left: BAM-9AM; lower right: 9AM-10AM.

4.3 Predicting

In addition to showing historical data, by connegthetwork and smart card data in the transportatnod
we also tested our elasticity method on the actatd simulating several measures. We investigated
frequency changes, fare adjustments and reroufiadine. The elasticities we used were based on
literature @5) and also on rules of thumb of HTM. For instarnge,used an elasticity value of -0,5 for
travel time changes. This means that an increa$8%fin travel time will lead to 5% less travelerbe
rules of thumb of HTM were audited and proven tovékd by independent resear@y).

We adjusted the original skim matrix to the measared calculated the new passenger OD-
matrix accordingly. We assigned this matrix, udimg Zenith-algorithmZ0). Similar visualizations as
shown in Figure 4 may be generated showing thelimbvioads. Figure 5 shows the outcomes (in terms
of change in passenger load) of two examples dafifip@etwork scenarios: a frequency increase and a
route change in a public transport line. The maintigbution of this method is that we clearly see t
network impacts. Figure 5 (left) shows a frequeincyease on two lines, with expected ridership ghow
on these two lines (green), but also a decreaaeéarby line (red). In Figure 5 (right), we se® th
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impacts of a route change (a link was blocked eami$ had to be diverted). Due to higher travelscoat
the new route, the total number of passenger destig@gncrease on the diverted line route (green) is
smaller than decrease on the original route (red)).

FIGURE 5 The effect of two example network scenarios in the phblic transport network: a
frequency increase (left) and a changein route (right).

We did a validity check on the results, which wigrdine with the existing methods (traditional
models). However, the next step would be detaisgtarch on revealed behavior after changes to find
updated elasticity values, specifically focusingtliis area and the types of passengers.

4.4 Reflection

In this research we have chosen an initially pcattpproach by choosing a zonal system correspgndi

to the actual stops. A more desirable option ishoose a zonal system as used in the model system f
this region. This would allow direct usage of modglit factors from this model while having a much

more accurate matrix for the current situation.

Because our case was limited to tram lines onlyterahoice in this network did not play a
significant role. This meant that calibrating tloeite choice model using smart card data was ngt ver
challenging as mostly just one route was feasibl@n anticipated extension of this study we intémd
increase the network with all the bus lines of Hague, resulting in a network with significant reut
choice options. A public transport route choiceodthm needs parameters, for example logit paraimete
in stop choice and line choice models, or the wigigttors for cost components in the generalizesisco
function (as are also defined in this paper). Témited smart card data presented in this papdd duu
used to calibrate these parameters, since thelaoutaes chosen by travelers are observed. If plelti
routes are available, a distribution among theemetin be derived from the data that should bmatsd
by the route choice model and its parameter seattifgirthermore, it can be tested whether these
parameters are approximately equal for differemigions (i.e. short trips vs. long trips).

5. CONCLUSIONS

Public transport operators are exposed to massitee abllection from their smart card systems. i th
Netherlands, every passenger needs to check irtlark out, resulting in detailed information on the
demand pattern. In buses and trams, check in aackaht takes place in the vehicle, providing also
information on route choice. This paper exploreBomg for using this smart card data for analysid a
performing simple what-if analyses by using tramsgmanning software. The intention is to provide
public transport operators with relatively simpbagy to build) models to perform these what-if gsed.

The data is relatively easily converted to passenger line and matrices between stops. This
matrix is assigned to the network to reproducentieasured passenger flows. Once the assignment can
reproduce the passenger flows simple what-if amalpecomes possible. With fixed demand, line
changes can be investigated. With the introduatifoan elasticity method on the demand matrix, sempl
modal-split calculations are possible.
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The method described above was applied on a aadg ist The Hague. The tool turned out to be
very valuable for the operator to gain insightoismall changes. However, the approach has some
limitations and shortcomings. First of all, thestleity method is only valid for short term predicts and
only unimodal (public transport) results are praddWe recommend further research on region specifi
elasticities. With the availability of smart cardsluable revealed preference research is posaftde
changes in level of service. Another anticipatedriosmement is related to the zonal system. In thisec
the zones are at the stops making what-if analgeisstop choice rather limited. In an anticipated
extension the smart card data station-to-statiamixnaill be converted to a proper zone matrix.
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