Hidden benefits of light rail systems in the urban transport network

dr. ir. N. van Oort

Assistant professor public transport

Meeting Rotterdam/The Hague 2014

Resume

- Research agenda
 - Optimizing public transport
 - Network, timetables and operations
 - Three key aspects:
 - Vehicle -> Passengers
 - Trip -> journey
 - Costs -> benefits
 - Data driven research
- Light rail
 - Planning and decision making
 - Optimization of planning and operations
 - Success and failure aspects in NL
 - Analysis of projects in NL
 - Book in 2015, in cooperation with Dr. Rob vd Bijl

Outline

Increasing quality and ridership of public transport services

Light rail combines strengths of several systems (train, tram, metro)

Service reliability is key quality aspect

Potential impacts?

Decision making?

Two cases:

- Light rail operations: RandstadRail The Hague
- Light rail planning: New tram line Utrecht

RandstadRail: The Hague

About 95.000 passengers per day

Two lines; 33 and 27 km | 41 and 31 stops

5 min headway per line per direction

Focus on service reliability

- High level of quality and reliability
- In urban area
 - Poor punctuality
 - Poor regularity
- High number of vehicles per hour per direction (>24)
- Signalling applied: limited capacity
- Shared tracks with tram and metro
- Operational targets of transit authority

Main elements

- Preventing unplanned stopping
- Punctuality
- Dwelling (vehicles and stops)
- Timetable
- Dispatching room

Actual effects

• Average dwell time $28 s \rightarrow 24 s$

Standard deviation - 70%

• Average delay $90 s \rightarrow 20 s$

• Departure punctuality: $70\% \rightarrow 93\%$ <-1,+1>

• Driving ahead of schedule: $50\% \rightarrow 7\%$ < \leftarrow ,0>

• Customer satisfaction: 6.7->7.4

• Ridership growth: ~30%

Conclusions

- RandstadRail: High frequent light rail in an urban area
- High reliability because of controlling operations
- Ridership growth due to substantial quality leap
- How to incorporate quality improvements in decision making and planning?

Decision making in public transport

- Most projects aim at enhanced reliability
- Service reliability is often missing in CBA and transport models
- We developed:
 - Methodology to incorporate passenger impacts of service reliability:
 - Transport models (reliable forecasts)
 - Cost benefit analyses
- Applied in Utrecht

Case: Uithoflijn (line 12)

- University
- Hospital

Utrecht

- Centrally located in the Netherlands
- 4th largest city
- 300.000 inhabitants

Problem analysis

- Busiest bus line in the Netherlands: 27.000 passengers per day
- Frequency of 23x/hour/direction using double-articulated buses: 30x/hour/direction necessary
- Mobility is still growing
 - +25% planned property in the Uithof: +8000 students, +10.000 employees
 - Total: 53.000 students, 30.000 employees and 3.500 visitors (hospital)
 - No additional parking space
 - Demand forecast: 46.000 passenger per day

Solution

Introduction of a light rail line: 16-20x/hour

Ministry requires CBA

- Regional parties agreed with plans and finances
- €110 million of Minister of Transport available (about 1/3 of total costs)

Our approach

Calculations of:

- Future demand, including tram bonus impacts
- Costs (infrastructure and operations)
- Benefits
 - Travel time gains
 - Reliability gains

Results CBA

Service reliability effects are over >60% of all benefits!

This method was approved by the Dutch Ministry and the Minister provided the €110 million

Conclusions

- Service reliability is important quality aspect of public transport
- Light rail enables increase in service realibility and higher ridership
- Little attention to service reliability in cost-benefit analyses
- Research and case proves:
 - It is possible to quantify service reliability and calculate the monetary value
 - Service reliability benefits made the difference
- Service reliability needs more attention in both planning and decision making

Questions / Contact

Niels van Oort

N.vanOort@TUDelft.nl

Papers:

https://nielsvanoort.weblog.tudelft.nl/

International Railway Journal

